
Elk jaar organiseert de Nederlandse wegautoriteit RDW de Self Driving
Challenge (SDC). De SDC is een competitie voor Nederlandse univer-
siteiten en hun studenten om een zelfrijdende oplossing te bouwen
voor een auto-achtig voertuig. Het is bedoeld om kennis op te doen
over complexe technologie voor autonome besluitvorming in een auto.
Elk jaar wordt een nieuw doel gesteld voor de challenge en krijgen
deelnemende studententeams de opdracht om software voor hun
voertuig te ontwikkelen om dit doel zo goed mogelijk te behalen. Het
voertuig moet over een aangewezen parcours navigeren, verkeers-
borden volgen, stoppen bij verkeerslichten en parkeren in gemar-
keerde vakken.
De challenge heeft twee categorieën: closed, waarin deelnemers een
door RDW geleverde elektrische kart met een standaard Intel i5 compu-
ter gebruiken, en open, waarin teams hun eigen oplossing mochten
bedenken. Figuur 1 laat voorbeelden van voertuigen in elke categorie
zien. Team Fontys won de SDC open categorie in 2024. De open catego-
rie stelde ons in staat ons eigen voertuig te ontwikkelen met custom
hardware en software. Op deze manier wilden we graag de mogelijk-
heden van machinelearning-gebaseerde softwareontwikkeling door
onze studenten verkennen. De open categorie maakte het mogelijk

PROJECT

Door Edwin van den Oetelaar, Sieuwe Elferink en
Teade Punter (Nederland)

Zelfrijdende auto’s beloven veiligere
wegen, meer ona	ankelijkheid
voor mensen met een handicap
en e�ciënter, milieuvriendelijker
verkeer. Ontdek hoe een team van
een Nederlandse universiteit deze
mogelijkheden in de praktijk heeft
gebracht en met hun autonome
voertuig de eerste plaats behaalde in de
Self Driving Challenge van de RDW.

Autonoom rijden
op basis van AI

De Self Driving Challenge 2024 van de RDW

Figuur 1. Voertuigtypes in de challenge van 2024: Renault Twizy (open
categorie), RDW kart (closed categorie).

Fontys Quad (open categorie).

102 januari/februari 2026 www.elektormagazine.nl

E.L.W. Oetelaar - 1403

om te focussen op machinelearning-gebaseerde oplossingen in plaats
van klassieke algoritmen, wat meer vrijheid gaf om te experimenteren.
Omdat we hoge processor eisen verwachtten, kozen we voor het
NVIDIA Orin platform met CUDA-versnelling [2] op Linux in plaats
van de standaard i5-setup. We hebben een eigen quad ontworpen om
onze eigen elektronica en mechanische systemen beter te verkennen.
Dit artikel doet verslag van ons ontwerp en onze ervaringen bij het
ontwikkelen van onze auto.

Besturingen
We hebben ons systeem en ontwikkelgroep opgesplitst in twee delen:
Vehicle Controller (snelheid, sturen, odometrie, low latency 1000 Hz
regellus) en het Brain (mission control, planning en sensorverwerking,
onafhankelijk in een tragere besturingskring). Beide waren verbonden
via betrouwbaar bekabeld 100 Mbit Ethernet, wat onze versie van een
ruggengraat is. Een blokschema van het systeem wordt getoond in
Figuur 2.
Onze SDC-voertuigbesturing kende vier grote uitdagingen: sturen,
snelheidscontrole, remmen en communicatie. De Vehicle Controller
was gebaseerd op een ESP32, verbonden via bekabeld 100 Mbit Ether-
net. Voor signaalintegriteit maakten we printen met optische-isolatie.
Ook implementeerden we een PID-regelsysteem binnen de motor-
besturing en stuurbesturing, en integreerden we een protocolstack die
fail-safe mechanismen ondersteunt zodat het altijd betrouwbaar werkt.
Sturen was de grootste technische uitdaging, waardoor we verschil-
lende oplossingen hebben getest. Eerdere pogingen omvatten
roterende servo’s, lineaire actuatoren en zelfs een stuurbekrachtigings-
systeem van een Suzuki Alto, maar deze waren te zwak of te langzaam.
Uiteindelijk ontwikkelden we een hoogkoppel-motorsysteem met een
geïntegreerde versnellingsbak, waarbij een stevig metalen tandwiel
direct op de stuurkolom is gemonteerd. Dit bood het benodigde vermo-
gen en de respons om het voertuig goed te kunnen besturen.
Om nauwkeurig sturen te garanderen, integreerden we een MAQ473
Hall-gebaseerde absolute hoeksensor [3] en voegden we mechanische
eindstops toe met eindschakelaars die de motorvoeding onderbreken
om overmatige-rotatie en schade te voorkomen. Snelheidscontrole werd
geregeld met een galvanisch gescheiden PWM-naar 0-5 V-uitgangs-
circuit dat we zelf hebben ontworpen en gebouwd. Voor communi-
catie combineerden we bekabeld 100 Mbit Ethernet (met scheiding-
stransformatoren) met het open-source IP/Zenoh-protocol [4] voor
autonome besturing en voegden we een 6-kanaals PPM-gebaseerde
RC-invoer toe voor handmatige besturing.

We integreerden een gecertificeerd RF-noodstopsysteem, ontworpen
om direct de motorvoeding op hardwareniveau te onderbreken. Dit
was een belangrijke veiligheidsmaatregel voor directe uitschakeling bij
onverwacht gedrag. Autonoom rijden vereist strikte veiligheidsmaat-
regelen, en de organisatoren van de challenge stelden een noodstop-
systeem verplicht als eis voor deelname.
Voor waarneming kozen we voor een enkele ZED-X stereo dieptecamera
[5] in plaats van LiDAR of radar. Onze aanpak is AI-gebaseerd en
huidige deep-learningmodellen zijn makkelijker toe te passen op
cameradata, wat dit de meest praktische keuze maakt. LiDAR voegt
complexiteit en kosten toe, terwijl onze setup eenvoudig en goedkoop
blijft—kernprincipes in ons ontwerp.

Mechanische en elektrische aanpassingen
We hebben het voertuig verstevigd met gelaste metalen bumpers aan
de voor- en achterkant, voorzien van schakelaars voor botsingsdetectie.
De stroom kwam van het originele 48 V DC lead-acid accupakket,
waaruit we alle benodigde spanningen genereerden met geïsoleerde
DC/DC-converters (24 V voor sturen, 12 V voor de Orin en 5 V voor
microcontrollers). Een elektrisch bediende hydraulische rem werd
ontworpen en toegevoegd, maar raakte beschadigd tijdens het testen
en was daarom niet operationeel tijdens de challenge. We kozen
voor elektrisch remmen; we sloten de motorwikkelingen kort van de
BLDC-motor om direct te stoppen.
De hardware, elektronica en software zijn parallel ontwikkeld, wat
zorgde voor afstemming van de API’s om integratie mogelijk te maken.
Teamleden waren afhankelijk van elkaar om hun onderdelen af te
ronden, met veranderingen en updates door het hele systeem tot aan
de laatste dagen voor de challenge.

Navigatiesysteem
Het navigatiesysteem is verantwoordelijk voor het vinden van de beste
voertuigcommando’s om bepaalde doelen te behalen. Voor de SDC
zijn deze doelen de uitdagingen die door de RDW zijn opgegeven. Een
doel is bijvoorbeeld het volgen van het wegdek of veilig stoppen voor
een verkeerslicht. Om deze optimale voertuigcommando’s te vinden,
kozen we voor de Sense, Think, Act-architectuur (Figuur 3), hoewel
we de nadelen kennen [6]. Deze veelgebruikte architectuur wordt
ook toegepast in gerelateerd roboticaonderzoek zoals bij zelfrijdende
voertuigen in [7] en [8].
Deze architectuur splitst navigatie op in drie afzonderlijke taken. De
Sense-taak verzamelt informatie over de omgeving van het voertuig,

Figuur 2. Gelaagde voertuigarchitectuur
(soft en hard realtime).

Figuur 3. Onze simpele “Sense, Think, Act”-oplossing.

 januari/februari 2026 103

E.L.W. Oetelaar - 1403

bijvoorbeeld de afstand tot een voertuig of de locatie van het wegdek.
Deze informatie kan komen van allerlei sensoren op of buiten het
voertuig zoals camera’s of kaartdata. De Think-taak berekent het beste
pad om de doelen van het navigatiesysteem te halen. De Act-taak zorgt
ervoor dat het voertuig fysiek het beste pad volgt, bijvoorbeeld via
sturen of het gaspedaal. Samen vormen deze modules een navigatie-
pijplijn die in een continue lus wordt verwerkt. We behaalden een
gecombineerde pijplijn-snelheid van 0,2 s, resulterend in een update-
frequentie van 5 Hz.

De sense taak
Dit begint met het vastleggen van data over de omgeving van het
voertuig met het ZED X stereo visionsysteem. Dit systeem gebruikt
twee camera’s voor stereovisie en behaalt diepte-perceptie met minder
dan 2 cm nauwkeurigheid in helder buitenlicht. Het levert ook 2K
RGB-beelden van de linkercamera, via de ZED SDK, met diepteverwer-
king op het Jetson Orin-apparaat. Om het systeem simpel te houden,

kozen we ervoor geen extra sensoren zoals
extra camera’s, Lidar of wielodometrie toe te
voegen.
De beelddata van de ZED X-camera wordt
geanalyseerd met een set parallel draaiende
detectoren om autonomie-gerelateerde infor-
matie uit de ruwe beelddata te halen. Al deze
detectoren zijn gebaseerd op Machine Learn-
ing (ML), omdat ML zich goed aanpast aan
allerlei externe factoren zoals schaduwen en
bewolking die het beeld veranderen [9]. Tradi-
tionele computer vision-technieken focussen
op beeldanalyse zonder context en falen als
externe factoren niet gecontroleerd kunnen
worden zoals bij de SDC.

Voetgangersdetectie
Voetgangersdetectie (Figuur 4) is gedaan
met de ingebouwde voetgangersdetector
en tracker van de ZED SDK. Dit gebruikt
een ML-model van Stereolabs dat diepte-
en RGB-beelden combineert voor volledige
positiedetectie van mensen. Zo kun je locatie
en afstand van voetgangers bepalen.

Voertuig- en rijstrookdetectie
In ons originele systeemoverzicht (Figuur
5) zijn voertuigdetectie en rijstrookdetectie
twee aparte modules. Tijdens de implemen-
tatie vonden we echter een model genaamd
YOLOPv2 dat beide taken combineert in
één ML-model dat state of the art resultaten
haalt [10]. Daardoor konden we de architec-
tuur aanpassen, de uiteindelijke versie staat
in Figuur 6.
Het YOLOPv2-model gebruikt de populaire
YOLO-architectuur voor de encoder-back-
bone. Het onderscheidt zich door meerdere

Figuur 4. De ingebouwde voetgangersdetector van de ZED SDK.

ZED Camera

Depth video
frame

Depth video RGB video

Point cloud
data

Point cloud

Positional data

IMU

Pixel coords lanes

Lane detection

Pixel coords
traffic light

Traffic light detect...

Position in
3D environment

Spatial mapping

2D occupancy grid

Video transform

Starting point &
desired destination

Path planning

Speed &
steering angle

Vehicle control

Carla simulationVehicle

RGB video frame

Figuur 5. Oorspronkelijk systeemoverzicht.

104 januari/februari 2026 www.elektormagazine.nl

E.L.W. Oetelaar - 1403

y-coördinaten in het beeld. De afstand tot het
voertuig (z) is ook nodig voor veilige naviga-
tie. Om deze afstand te bepalen worden de
bounding box-coördinaten van de ML-detectie
in het RGB-beeld gebruikt als masker in het
dieptebeeld van de ZED X-sensor. Zo kun je de
z-coördinaten halen om de afstand te krijgen.
De RGB-coördinaten als masker gebruiken
werkt, omdat diepte- en RGB-beeld van de
ZED X hetzelfde coördinatensysteem en
oorsprong hebben.

Verkeerslichten
De verkeerslichtdetectie (Figuur 8) wordt
uitgevoerd met een YOLOv8 ML-model uit
[12]. Dit model kan de locatie (x, y) en status
van het verkeerslicht detecteren. De afstand
tot het verkeerslicht (z) werd bepaald met een
bounding box masker over de dieptekaart.
Het model leverde ruwe detecties. Om een
verkeerslicht over meerdere frames te volgen
was een tracker nodig. Een KCF (Kernelized
Correlation Filters) tracker werd gebruikt om
elk verkeerslicht een ID te geven, wat nodig
is voor goede planning. Nuttige voorbeelden
staan bij [13].

Zebrapaden
Een geschikt zebrapad-detectiemodel vinden was lastig. In plaats
daarvan is een eigen model getraind op basis van de YOLOv8-archi-
tectuur met de Ultralytics-bibliotheek [14]. Een dataset is gemaakt
met testvideo’s van het parcours. Een dataset maken van één locatie
is normaal slechte praktijk omdat dit overfitting geeft [15]. Voor de
SDC bleek overfitting hier juist handig, omdat het voertuig maar één
specifieke locatie hoeft te rijden. Afstand tot het zebrapad (z) werd
berekend met een bounding box masker over de dieptekaart.

taken te combineren in één model. Dit heet een hydranet en combi-
neert meerdere decoders met dezelfde embeddingsruimte (“heads”)
om verschillende taken uit te voeren zoals weg-segmentatie, lijn-de-
tectie en obstakeldetectie. Hydranets zijn een trend in de wereld van
zelfrijdende voertuigen; Tesla zet hier bijvoorbeeld vol op in met hun
nieuwe end-to-end-aanpak [11].
Voertuig- en rijstrookdetectie zijn te zien in Figuur 7. De rode lijnen
zijn het rijstrookresultaat van het YOLOPv2-model. Het gele kader
toont de voertuigdetectie in actie. Dit gele kader representeert de x- en

Figuur 6. Definitief systeemoverzicht.

Figuur 7. YOLOPv2-lijndetectie plus onze stuurvectorberekening. Figuur 8. YOLOv8 Rode verkeerslichtdetector met weergave van het
betrouwbaarheidsniveau.

 januari/februari 2026 105

E.L.W. Oetelaar - 1403

Act
De Think-taak geeft gewenste voertuigcommando’s door in de vorm
van een gewenste snelheid en stuurhoek om de doelen van het
navigatiesysteem veilig te behalen. De Act-taak voert deze gewenste
commando’s daadwerkelijk uit op het voertuig. Deze verantwoordelijk-
heid ligt volledig bij de low-level vehicle controller. Het navigatiesysteem
stuurt de gewenste snelheid en stuurhoek over het Zenoh-protocol
naar de low-level controller, die de acties uitvoert en de status van
het voertuig terug-rapporteert.

Groot succes, met een paar problemen
Een aantal van de veiligheids- en low-level logica-onderdelen zijn
afzonderlijk getest en gevalideerd met de CARLA-simulator [16]. Na
succesvolle tests werd het hele systeem geëvalueerd tijdens de SDC-fi-
nale op het RDW-testparcours in Lelystad (Figuur 10). Het voertuig
presteerde goed in de meeste uitdagingen, en werd uiteindelijk eerste.
Functies zoals afstandsbediening (RC) hielpen het voertuig snel te
verplaatsen na een mislukte poging. Ook de state-machine liet correct
gedrag zien binnen elke toestand en overgang. Toch waren er ook
enkele beperkingen; die bespreken we hieronder.

> De ML-gebaseerde detectoren van de sense-taak gaven soms

false positives of false negatives. Vooral het publiek rond het
parcours tijdens de finale, dat er tijdens de tests niet was, was
lastig. De stoplichtdetector gaf bijvoorbeeld valse rode licht-
detecties op basis van rode kleding van toeschouwers. Dit
leidde tot verkeerde toestands-overgangen, zoals niet naar
de AV_DRIVING-toestand gaan als het licht op groen sprong.
Vanwege betrouwbaarheidsproblemen is de verkeersbord-
detector niet gebruikt; in plaats daarvan werd 15 km/h op rechte
stukken en 5 km/h in bochten gereden.

> Sommige ML-detectoren hadden een hoge inference-tijd
(reactietijd) [17], wat leidde tot een trage update. Vooral de
verkeerslichtdetector was traag, waardoor de besturing niet
vloeiend was en het voertuig bijvoorbeeld niet in de rijstrook
bleef.

> Het eenvoudige planningssysteem met centerline tracker kon
in complexe situaties niet op koers blijven. Het werkte goed op

Tot slot werd verkeersborddetectie gedaan met een ander YOLOv8-
model. Dit model is getraind op een grote dataset van Europese
verkeersborden. Het geeft de locatie (x, y) en het bordtype. Bijvoor-
beeld, het kan onderscheid maken tussen een 10 km/h en een 20 km/h
bord, zoals te zien in Figuur 9. Afstand tot het verkeersbord (z) werd
bepaald met een bounding box masker over de dieptekaart.

De think taak
De Think-taak krijgt informatie zoals de locatie van objecten zoals
verkeerslichten of andere voertuigen om beslissingen te nemen.
Oorspronkelijk werd een occupancy grid planner gemaakt door alle
informatie uit het sense-model samen te voegen in een “wereldmodel”.
Maar een accuraat wereldmodel maken bleek lastig met ons kleine
team en beperkte tijd. Daarom werd een simpelere planner gebruikt die
beslissingen per frame maakt zonder verleden of toekomst te gebruiken.
Het systeem werkt door een state-machine die hoog-niveau gedrag
definieert te combineren met een centerline tracker om op een berijd-
baar oppervlak te blijven.
De centerline tracker werkt door eerst de rijstrookgrenzen te zoeken
door vanaf het midden naar buiten te scannen, en dan het midden
ertussen te berekenen. Dit midden wordt gebruikt om een hoek te
bepalen tussen het midden van het voertuig en het midden van de
rijstrook. Deze hoek wordt aangepast op basis van rijstrookpositie
en gezichtsveld (FOV), en helpt de juiste stuurhoek te schatten om
gecentreerd te blijven.
De state-machine definieert hoog-niveau gedrag met toestanden
zoals AV_DRIVING, AV_WAITING en AV_CROSSWALK. Elke toestand en
overgang heeft bijbehorend gedrag. Bijvoorbeeld, AV_DRIVING houdt
een constante snelheid aan, gegeven door de verkeersborddetector
en gebruikt de centerline tracker om op de weg te blijven. Overgang
van AV_DRIVING naar AV_CROSSWALK vereist remmen tot 0 km/h.
In AV_CROSSWALK wacht het voertuig tot de voetganger wegloopt.
Daarna gaat het voertuig weer naar AV_DRIVING, wat gas geven
betekent om weer op de snelheidslimiet te komen. De state-machine
bevat zes verschillende toestanden met overgangen om het gedrag
van het voertuig te bepalen in de verschillende SDC-uitdagingen.

Figuur 9. YOLOv8 verkeersborddetectie.

Figuur 10. Tijdens de finale stopt ons voertuig bij het rode licht.

106 januari/februari 2026 www.elektormagazine.nl

E.L.W. Oetelaar - 1403

het rechte stuk met twee lichte bochten, maar bij splitsingen en
bochten vertraagde en versnelde het voertuig onregelmatig en
ging het uit de rijstrook. Ook was stoppen voor het verkeers-
licht op de juiste plek vaak een probleem door een te simpele
afbouwfunctie.

> Het draadloze veiligheidssysteem had te weinig bereik, waardoor
het voertuig voortijdig stopte.

> De centerline tracker en rijstrookdetector waren gevoelig voor
de camerapositie op het voertuig, waardoor de ZED X meerdere
keren verplaatst moest worden met een niet-optimale montage
tot gevolg.

Aanbevelingen voor verbetering
Het huidige systeem vormt een solide basis, zoals blijkt uit de winst
van de 2024 SDC open-categorie. Op basis van testdata en resulta-
ten op de dag van de challenge hebben we een lijst aanbevelingen
voor volgende SDC-edities. We verwachten dat deze aanbevelingen
ons systeem verbeteren.
De eerste twee problemen hierboven zijn beide gerelateerd aan presta-
tiebeperkingen van de ML-detectoren. Reactietijd kan worden verbeterd
door nieuwere modelarchitecturen te gebruiken met kleinere modellen
en vergelijkbare nauwkeurigheid. Foute detecties kunnen worden verbe-
terd door bestaande modellen te fine-tunen op meer representatieve
data. Deze updates kunnen het navigatiesysteem verbeteren, maar we
verwachten vooral winst door het huidige per-frame planningssysteem
van de Think-taak (zie punt drie) te verbeteren. Door temporale infor-
matie op te nemen in een wereldmodel wordt de besturing soepeler
en consistenter. Ook kun je met het global-model valse detecties filte-
ren, wat nu eenmaal bij ML hoort [18].
Een planningssysteem op basis van een occupancy grid kan gebruikt
worden: alle informatie uit de Sense-module wordt in één wereldmodel
gebracht, geprojecteerd op een grid waarin elke cel een kostenwaarde
heeft. Een planningsalgoritme plant een route met de laagste kosten
om de navigatiedoelen te optimaliseren. Zo’n occupancy grid maakt
het navigatiesysteem robuuster doordat verleden en heden samen
gebruikt worden, in plaats van alleen de huidige tijdstap. Dit biedt
sterkere navigatie in moeilijke situaties.
Probleem 4 kan worden opgelost door het noodstopsysteem te vervan-
gen door een versie met minimaal 400 m bereik. De camerapositie
(probleem 5) kan worden opgelost met een nieuwe camerabeugel
die in de rijrichting verstelbaar is.

Richting nieuwere systemen
Belangrijke spelers zoals Tesla bewegen steeds meer richting leer-ge-
baseerde in plaats van regel-gebaseerde beslissingen. Werk als [19] en
[20] vervangt de volledige Sense-taak door een enkele hydranet ML om
een robuust global-model en occupancy grid te maken. Ook end-to-
end methoden die de hele Sense, Think, Act-architectuur vervangen
door één hydranet ML-model (zoals die van NVIDIA) laten zien dat
betrouwbaar autonoom rijden mogelijk is in veel scenario’s [21][22]
[23]. Toekomstige SDC-teams kunnen deze trends onderzoeken om
het huidige expliciete systeem sterk te verbeteren. In dit artikel hebben
we de ingrediënten gegeven voor een redelijke kans op succes. Maar
het blijft veel werk, expertise en inzet van het team.

240677-03

Over de Auteur

Edwin van den Oetelaar is technicus en docent
aan Fontys ICT in Nederland. Hij maakt deel uit
van de onderzoeksgroep High Tech Embedded
Software onder leiding van prof. Teade Punter. Hij

is specialist in hardware- en softwareontwikkeling en werkt graag
samen met studenten aan uitdagende projecten zoals zelfrijdende
auto’s en robots.

Sieuwe Elferink is gastonderzoeker bij de onder-
zoeksgroep High Tech Embedded Software en
oprichter/eigenaar van MultiRotorResearch / MRR
Drones. Hij behaalde een master in robotica en AI,

met specialisatie in slimme navigatiesystemen en AI-gebaseerde
besluitvorming. Zijn onderzoek richt zich zowel op autonome drones
als zelfrijdende voertuigen.

Teade Punter is lector High Tech Embedded
Software aan Fontys ICT in Nederland. Zijn
onderzoeksgroep doet toegepast onderzoek
naar data-engineering, digital twinning en AI voor

slimme systeemontwikkeling, met toepassingen in smart industry en
demontage, zelfrijdende laboratoria voor chemie, energiesystemen
en autonoom rijden.

Vragen of opmerkingen?
Hebt u technische vragen of opmerkingen naar aanleiding van
dit artikel? Stuur een e-mail naar de redactie van Elektor via
redactie@elektor.com.

 Gerelateerd Product

> reComputer J1020 v2 – Edge AI-apparaat
met NVIDIA Jetson Nano (4 GB)
www.elektor.nl/20968
met NVIDIA Jetson Nano (4 GB)

 januari/februari 2026 107

E.L.W. Oetelaar - 1403

[1] Wikipedia, Citron / CC-BY-SA-3.0: https://commons.wikimedia.org/wiki/File:Renault_Twizy.jpg
[2] “Jetson Orin AGX: High-performance AI computing for edge devices,” 2024, NVIDIA: https://tinyurl.com/nvidia-jetson-orin
[3] “MAQ473: 9-Bit to 14-Bit MagAlpha Automotive Angle Sensor with ABZ Incremental and PWM Outputs,” 2024, Monolithic Power

Systems: https://www.monolithicpower.com/en/products/automotive-aecq-grade/sensors/maq473.html
[4] Eclipse Foundation, “Eclipse Zenoh: Zero overhead pub/sub, store/query and compute,” 2024, GitHub:

https://github.com/eclipse-zenoh/zenoh
[5] ZED X: Industriële stereocamera voor ruimtelijke perceptie, Stereolabs Inc.: https://www.stereolabs.com/en-nl/products/zed-x
[6] Siegel, M., “The sense-think-act paradigm revisited,” 1st International Workshop on Robotic Sensing, 2003, IEEE:

https://doi.org/10.1109/ROSE.2003.1218700
[7] Claussmann, L., Revilloud, M., Gruyer, D., & Glaser, S., A review of motion planning for highway autonomous driving, IEEE

Transactions on Intelligent Transportation Systems: https://doi.org/10.1109/TITS.2019.2913998
[8] Pendleton, S. D., et al., “Perception, planning, control, and coordination for autonomous vehicles,” Machines, 5(1), Article 6:

https://doi.org/10.3390/machines5010006
[9] O’Mahony, N., et al., “Deep learning vs. traditional computer vision,” arXiv : https://doi.org/10.48550/arXiv.1910.13796
[10] Han, C., et al., “YOLOPv2: Better, faster, stronger for panoptic driving perception,” 2022, arXiv:

https://doi.org/10.48550/arXiv.2208.11434
[11] Tesla’s HydraNet - How Tesla’s Autopilot works, Think Autonomous:

https://www.thinkautonomous.ai/blog/how-tesla-autopilot-works/
[12] Syazvinski, Traffic Light Detection and Color Classification Using Yolo v8, GitHub:

https://github.com/Syazvinski/Traffic-Light-Detection-Color-Classification
[13] Flucus, Traffic Sign Detection AI, GitHub: https://github.com/Flucus/Traffic-Sign-Detection-AI
[14] AI vision for everyone, Ultralytics: https://ultralytics.com
[15] Xue, Y., “An overview of overfitting and its solutions,” Journal of Physics: Conference Series, 1168(2), 022022, 2019, IOPScience:

https://doi.org/10.1088/1742-6596/1168/2/022022
[16] Dosovitskiy, A., et al., “CARLA: An open urban driving simulator,” 2017, arXiv: https://doi.org/10.48550/arXiv.1711.03938
[17] What is machine learning inference, Hazelcast: https://tinyurl.com/hazelcast-machine-learning
[18] Sapkota, R., et al., “Comprehensive performance evaluation of YOLO11, YOLOv10, YOLOv9, and YOLOv8 on detecting and

counting fruitlet in complex orchard environments,” 2024, arXiv: https://doi.org/10.48550/arXiv.2407.12040
[19] Xu, H., et al., “A survey on occupancy perception for autonomous driving: The information fusion perspective,” 2024, arXiv:

https://arxiv.org/abs/2405.05173
[20] OpenDriveLab, OccNet: Scene as Occupancy [Code], GitHub: https://github.com/OpenDriveLab/OccNet
[21] Zhou, H., et al., “Review of learning-based longitudinal motion planning for autonomous vehicles: Research gaps between self-

driving and traffic congestion,” 2021, arXiv: https://doi.org/10.48550/arXiv.1910.06070
[22] Li, Z., et al., “Hydra-MDP: End-to-end multimodal planning with multi-target Hydra-distillation,” 2024, arXiv:

https://doi.org/10.48550/arXiv.2406.06978
[23] Singh, K., “Tesla FSD V12.5.5 adds end-to-end highway stack; Tesla teases upcoming features,” 2024, Not A Tesla App:

https://tinyurl.com/tesla-fsd-v1255

WEBLINKS

108 januari/februari 2026 www.elektormagazine.nl

E.L.W. Oetelaar - 1403

