
Elk jaar organiseert de Nederlandse wegautoriteit RDW de Self Driving 
Challenge (SDC). De SDC is een competitie voor Nederlandse univer-
siteiten en hun studenten om een zelfrijdende oplossing te bouwen 
voor een auto-achtig voertuig. Het is bedoeld om kennis op te doen 
over complexe technologie voor autonome besluitvorming in een auto. 
Elk jaar wordt een nieuw doel gesteld voor de challenge en krijgen 
deelnemende studententeams de opdracht om software voor hun 
voertuig te ontwikkelen om dit doel zo goed mogelijk te behalen. Het 
voertuig moet over een aangewezen parcours navigeren, verkeers-
borden volgen, stoppen bij verkeerslichten en parkeren in gemar-
keerde vakken. 
De challenge heeft twee categorieën: closed, waarin deelnemers een 
door RDW geleverde elektrische kart met een standaard Intel i5 compu-
ter gebruiken, en open, waarin teams hun eigen oplossing mochten 
bedenken. Figuur 1 laat voorbeelden van voertuigen in elke categorie 
zien. Team Fontys won de SDC open categorie in 2024. De open catego-
rie stelde ons in staat ons eigen voertuig te ontwikkelen met custom 
hardware en software. Op deze manier wilden we graag de mogelijk-
heden van machinelearning-gebaseerde softwareontwikkeling door 
onze studenten verkennen. De open categorie maakte het mogelijk 
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categorie), RDW kart (closed categorie). 

Fontys Quad (open categorie). 

102   januari/februari 2026   www.elektormagazine.nl

E.L.W. Oetelaar - 1403



om te focussen op machinelearning-gebaseerde oplossingen in plaats 
van klassieke algoritmen, wat meer vrijheid gaf om te experimenteren.  
Omdat we hoge processor eisen verwachtten, kozen we voor het 
NVIDIA Orin platform met CUDA-versnelling [2] op Linux in plaats 
van de standaard i5-setup. We hebben een eigen quad ontworpen om 
onze eigen elektronica en mechanische systemen beter te verkennen. 
Dit artikel doet verslag van ons ontwerp en onze ervaringen bij het 
ontwikkelen van onze auto.  
  
Besturingen 
We hebben ons systeem en ontwikkelgroep opgesplitst in twee delen: 
Vehicle Controller (snelheid, sturen, odometrie, low latency 1000 Hz 
regellus) en het Brain (mission control, planning en sensorverwerking, 
onafhankelijk in een tragere besturingskring). Beide waren verbonden 
via betrouwbaar bekabeld 100 Mbit Ethernet, wat onze versie van een 
ruggengraat is. Een blokschema van het systeem wordt getoond in 
Figuur 2. 
Onze SDC-voertuigbesturing kende vier grote uitdagingen: sturen, 
snelheidscontrole, remmen en communicatie. De Vehicle Controller
was gebaseerd op een ESP32, verbonden via bekabeld 100 Mbit Ether-
net. Voor signaalintegriteit maakten we printen met optische-isolatie. 
Ook implementeerden we een PID-regelsysteem binnen de motor-
besturing en stuurbesturing, en integreerden we een protocolstack die 
fail-safe mechanismen ondersteunt zodat het altijd betrouwbaar werkt. 
Sturen was de grootste technische uitdaging, waardoor we verschil-
lende oplossingen hebben getest. Eerdere pogingen omvatten 
roterende servo’s, lineaire actuatoren en zelfs een stuurbekrachtigings-
systeem van een Suzuki Alto, maar deze waren te zwak of te langzaam. 
Uiteindelijk ontwikkelden we een hoogkoppel-motorsysteem met een 
geïntegreerde versnellingsbak, waarbij een stevig metalen tandwiel 
direct op de stuurkolom is gemonteerd. Dit bood het benodigde vermo-
gen en de respons om het voertuig goed te kunnen besturen.  
Om nauwkeurig sturen te garanderen, integreerden we een MAQ473 
Hall-gebaseerde absolute hoeksensor [3] en voegden we mechanische 
eindstops toe met eindschakelaars die de motorvoeding onderbreken 
om overmatige-rotatie en schade te voorkomen. Snelheidscontrole werd 
geregeld met een galvanisch gescheiden PWM-naar 0-5 V-uitgangs-
circuit dat we zelf hebben ontworpen en gebouwd. Voor communi-
catie combineerden we bekabeld 100 Mbit Ethernet (met scheiding-
stransformatoren) met het open-source IP/Zenoh-protocol [4] voor 
autonome besturing en voegden we een 6-kanaals PPM-gebaseerde 
RC-invoer toe voor handmatige besturing. 

We integreerden een gecertificeerd RF-noodstopsysteem, ontworpen 
om direct de motorvoeding op hardwareniveau te onderbreken. Dit 
was een belangrijke veiligheidsmaatregel voor directe uitschakeling bij 
onverwacht gedrag. Autonoom rijden vereist strikte veiligheidsmaat-
regelen, en de organisatoren van de challenge stelden een noodstop-
systeem verplicht als eis voor deelname. 
Voor waarneming kozen we voor een enkele ZED-X stereo dieptecamera 
[5] in plaats van LiDAR of radar. Onze aanpak is AI-gebaseerd en 
huidige deep-learningmodellen zijn makkelijker toe te passen op 
cameradata, wat dit de meest praktische keuze maakt. LiDAR voegt 
complexiteit en kosten toe, terwijl onze setup eenvoudig en goedkoop 
blijft—kernprincipes in ons ontwerp. 
  
Mechanische en elektrische aanpassingen 
We hebben het voertuig verstevigd met gelaste metalen bumpers aan 
de voor- en achterkant, voorzien van schakelaars voor botsingsdetectie. 
De stroom kwam van het originele 48 V DC lead-acid accupakket, 
waaruit we alle benodigde spanningen genereerden met geïsoleerde 
DC/DC-converters (24 V voor sturen, 12 V voor de Orin en 5 V voor 
microcontrollers). Een elektrisch bediende hydraulische rem werd 
ontworpen en toegevoegd, maar raakte beschadigd tijdens het testen 
en was daarom niet operationeel tijdens de challenge. We kozen 
voor elektrisch remmen; we sloten de motorwikkelingen kort van de 
BLDC-motor om direct te stoppen. 
De hardware, elektronica en software zijn parallel ontwikkeld, wat 
zorgde voor afstemming van de API’s om integratie mogelijk te maken. 
Teamleden waren afhankelijk van elkaar om hun onderdelen af te 
ronden, met veranderingen en updates door het hele systeem tot aan 
de laatste dagen voor de challenge. 
  
Navigatiesysteem 
Het navigatiesysteem is verantwoordelijk voor het vinden van de beste 
voertuigcommando’s om bepaalde doelen te behalen. Voor de SDC 
zijn deze doelen de uitdagingen die door de RDW zijn opgegeven. Een 
doel is bijvoorbeeld het volgen van het wegdek of veilig stoppen voor 
een verkeerslicht. Om deze optimale voertuigcommando’s te vinden, 
kozen we voor de Sense, Think, Act-architectuur (Figuur 3), hoewel 
we de nadelen kennen [6]. Deze veelgebruikte architectuur wordt 
ook toegepast in gerelateerd roboticaonderzoek zoals bij zelfrijdende 
voertuigen in [7] en [8].  
Deze architectuur splitst navigatie op in drie afzonderlijke taken. De 
Sense-taak verzamelt informatie over de omgeving van het voertuig, 

Figuur 2. Gelaagde voertuigarchitectuur 
(soft en hard realtime). 

Figuur 3. Onze simpele “Sense, Think, Act”-oplossing. 
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bijvoorbeeld de afstand tot een voertuig of de locatie van het wegdek. 
Deze informatie kan komen van allerlei sensoren op of buiten het 
voertuig zoals camera’s of kaartdata. De Think-taak berekent het beste 
pad om de doelen van het navigatiesysteem te halen. De Act-taak zorgt 
ervoor dat het voertuig fysiek het beste pad volgt, bijvoorbeeld via 
sturen of het gaspedaal. Samen vormen deze modules een navigatie-
pijplijn die in een continue lus wordt verwerkt. We behaalden een 
gecombineerde pijplijn-snelheid van 0,2 s, resulterend in een update-
frequentie van 5 Hz.   
  
De sense taak 
Dit begint met het vastleggen van data over de omgeving van het 
voertuig met het ZED X stereo visionsysteem. Dit systeem gebruikt 
twee camera’s voor stereovisie en behaalt diepte-perceptie met minder 
dan 2 cm nauwkeurigheid in helder buitenlicht. Het levert ook 2K 
RGB-beelden van de linkercamera, via de ZED SDK, met diepteverwer-
king op het Jetson Orin-apparaat. Om het systeem simpel te houden, 

kozen we ervoor geen extra sensoren zoals 
extra camera’s, Lidar of wielodometrie toe te 
voegen. 
De beelddata van de ZED X-camera wordt 
geanalyseerd met een set parallel draaiende 
detectoren om autonomie-gerelateerde infor-
matie uit de ruwe beelddata te halen. Al deze 
detectoren zijn gebaseerd op Machine Learn-
ing (ML), omdat ML zich goed aanpast aan 
allerlei externe factoren zoals schaduwen en 
bewolking die het beeld veranderen [9]. Tradi-
tionele computer vision-technieken focussen 
op beeldanalyse zonder context en falen als 
externe factoren niet gecontroleerd kunnen 
worden zoals bij de SDC.  
  
Voetgangersdetectie 
Voetgangersdetectie (Figuur 4) is gedaan 
met de ingebouwde voetgangersdetector 
en tracker van de ZED SDK. Dit gebruikt 
een ML-model van Stereolabs dat diepte- 
en RGB-beelden combineert voor volledige 
positiedetectie van mensen. Zo kun je locatie 
en afstand van voetgangers bepalen.  
  
Voertuig- en rijstrookdetectie 
In ons originele systeemoverzicht (Figuur 
5) zijn voertuigdetectie en rijstrookdetectie 
twee aparte modules. Tijdens de implemen-
tatie vonden we echter een model genaamd 
YOLOPv2 dat beide taken combineert in 
één ML-model dat state of the art resultaten 
haalt [10]. Daardoor konden we de architec-
tuur aanpassen, de uiteindelijke versie staat 
in Figuur 6. 
Het YOLOPv2-model gebruikt de populaire 
YOLO-architectuur voor de encoder-back-
bone. Het onderscheidt zich door meerdere 

Figuur 4. De ingebouwde voetgangersdetector van de ZED SDK. 
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y-coördinaten in het beeld. De afstand tot het 
voertuig (z) is ook nodig voor veilige naviga-
tie. Om deze afstand te bepalen worden de 
bounding box-coördinaten van de ML-detectie 
in het RGB-beeld gebruikt als masker in het 
dieptebeeld van de ZED X-sensor. Zo kun je de 
z-coördinaten halen om de afstand te krijgen. 
De RGB-coördinaten als masker gebruiken 
werkt, omdat diepte- en RGB-beeld van de 
ZED X hetzelfde coördinatensysteem en 
oorsprong hebben.  
  
Verkeerslichten 
De verkeerslichtdetectie (Figuur 8) wordt 
uitgevoerd met een YOLOv8 ML-model uit 
[12]. Dit model kan de locatie (x, y) en status 
van het verkeerslicht detecteren. De afstand 
tot het verkeerslicht (z) werd bepaald met een 
bounding box masker over de dieptekaart. 
Het model leverde ruwe detecties. Om een 
verkeerslicht over meerdere frames te volgen 
was een tracker nodig. Een KCF (Kernelized 
Correlation Filters) tracker werd gebruikt om 
elk verkeerslicht een ID te geven, wat nodig 
is voor goede planning. Nuttige voorbeelden 
staan bij [13]. 
  

Zebrapaden 
Een geschikt zebrapad-detectiemodel vinden was lastig. In plaats 
daarvan is een eigen model getraind op basis van de YOLOv8-archi-
tectuur met de Ultralytics-bibliotheek [14]. Een dataset is gemaakt 
met testvideo’s van het parcours. Een dataset maken van één locatie 
is normaal slechte praktijk omdat dit overfitting geeft [15]. Voor de 
SDC bleek overfitting hier juist handig, omdat het voertuig maar één 
specifieke locatie hoeft te rijden. Afstand tot het zebrapad (z) werd 
berekend met een bounding box masker over de dieptekaart. 

taken te combineren in één model. Dit heet een hydranet en combi-
neert meerdere decoders met dezelfde embeddingsruimte (“heads”) 
om verschillende taken uit te voeren zoals weg-segmentatie, lijn-de-
tectie en obstakeldetectie. Hydranets zijn een trend in de wereld van 
zelfrijdende voertuigen; Tesla zet hier bijvoorbeeld vol op in met hun 
nieuwe end-to-end-aanpak [11].  
Voertuig- en rijstrookdetectie zijn te zien in Figuur 7. De rode lijnen 
zijn het rijstrookresultaat van het YOLOPv2-model. Het gele kader 
toont de voertuigdetectie in actie. Dit gele kader representeert de x- en 

Figuur 6. Definitief systeemoverzicht. 

Figuur 7. YOLOPv2-lijndetectie plus onze stuurvectorberekening. Figuur 8. YOLOv8 Rode verkeerslichtdetector met weergave van het 
betrouwbaarheidsniveau. 
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Act 
De Think-taak geeft gewenste voertuigcommando’s door in de vorm 
van een gewenste snelheid en stuurhoek om de doelen van het 
navigatiesysteem veilig te behalen. De Act-taak voert deze gewenste 
commando’s daadwerkelijk uit op het voertuig. Deze verantwoordelijk-
heid ligt volledig bij de low-level vehicle controller. Het navigatiesysteem 
stuurt de gewenste snelheid en stuurhoek over het Zenoh-protocol 
naar de low-level controller, die de acties uitvoert en de status van 
het voertuig terug-rapporteert. 
  
Groot succes, met een paar problemen 
Een aantal van de veiligheids- en low-level logica-onderdelen zijn 
afzonderlijk getest en gevalideerd met de CARLA-simulator [16]. Na 
succesvolle tests werd het hele systeem geëvalueerd tijdens de SDC-fi-
nale op het RDW-testparcours in Lelystad (Figuur 10). Het voertuig 
presteerde goed in de meeste uitdagingen, en werd uiteindelijk eerste. 
Functies zoals afstandsbediening (RC) hielpen het voertuig snel te 
verplaatsen na een mislukte poging. Ook de state-machine liet correct 
gedrag zien binnen elke toestand en overgang. Toch waren er ook 
enkele beperkingen; die bespreken we hieronder.  
  
> De ML-gebaseerde detectoren van de sense-taak gaven soms 

false positives of false negatives. Vooral het publiek rond het 
parcours tijdens de finale, dat er tijdens de tests niet was, was 
lastig. De stoplichtdetector gaf bijvoorbeeld valse rode licht-
detecties op basis van rode kleding van toeschouwers. Dit 
leidde tot verkeerde toestands-overgangen, zoals niet naar 
de AV_DRIVING-toestand gaan als het licht op groen sprong. 
Vanwege betrouwbaarheidsproblemen is de verkeersbord-
detector niet gebruikt; in plaats daarvan werd 15 km/h op rechte 
stukken en 5 km/h in bochten gereden. 

> Sommige ML-detectoren hadden een hoge inference-tijd 
(reactietijd) [17], wat leidde tot een trage update. Vooral de 
verkeerslichtdetector was traag, waardoor de besturing niet 
vloeiend was en het voertuig bijvoorbeeld niet in de rijstrook 
bleef.  

> Het eenvoudige planningssysteem met centerline tracker kon 
in complexe situaties niet op koers blijven. Het werkte goed op 

Tot slot werd verkeersborddetectie gedaan met een ander YOLOv8-
model. Dit model is getraind op een grote dataset van Europese 
verkeersborden. Het geeft de locatie (x, y) en het bordtype. Bijvoor-
beeld, het kan onderscheid maken tussen een 10 km/h en een 20 km/h 
bord, zoals te zien in Figuur 9. Afstand tot het verkeersbord (z) werd 
bepaald met een bounding box masker over de dieptekaart.  
  
De think taak 
De Think-taak krijgt informatie zoals de locatie van objecten zoals 
verkeerslichten of andere voertuigen om beslissingen te nemen. 
Oorspronkelijk werd een occupancy grid planner gemaakt door alle 
informatie uit het sense-model samen te voegen in een “wereldmodel”. 
Maar een accuraat wereldmodel maken bleek lastig met ons kleine 
team en beperkte tijd. Daarom werd een simpelere planner gebruikt die 
beslissingen per frame maakt zonder verleden of toekomst te gebruiken. 
Het systeem werkt door een state-machine die hoog-niveau gedrag 
definieert te combineren met een centerline tracker om op een berijd-
baar oppervlak te blijven.  
De centerline tracker werkt door eerst de rijstrookgrenzen te zoeken 
door vanaf het midden naar buiten te scannen, en dan het midden 
ertussen te berekenen. Dit midden wordt gebruikt om een hoek te 
bepalen tussen het midden van het voertuig en het midden van de 
rijstrook. Deze hoek wordt aangepast op basis van rijstrookpositie 
en gezichtsveld (FOV), en helpt de juiste stuurhoek te schatten om 
gecentreerd te blijven.  
De state-machine definieert hoog-niveau gedrag met toestanden 
zoals AV_DRIVING, AV_WAITING en AV_CROSSWALK. Elke toestand en 
overgang heeft bijbehorend gedrag. Bijvoorbeeld, AV_DRIVING houdt 
een constante snelheid aan, gegeven door de verkeersborddetector 
en gebruikt de centerline tracker om op de weg te blijven. Overgang 
van AV_DRIVING naar AV_CROSSWALK vereist remmen tot 0 km/h. 
In AV_CROSSWALK wacht het voertuig tot de voetganger wegloopt. 
Daarna gaat het voertuig weer naar AV_DRIVING, wat gas geven 
betekent om weer op de snelheidslimiet te komen. De state-machine 
bevat zes verschillende toestanden met overgangen om het gedrag 
van het voertuig te bepalen in de verschillende SDC-uitdagingen. 
  

Figuur 9. YOLOv8 verkeersborddetectie. 

Figuur 10. Tijdens de finale stopt ons voertuig bij het rode licht. 

106   januari/februari 2026   www.elektormagazine.nl

E.L.W. Oetelaar - 1403



het rechte stuk met twee lichte bochten, maar bij splitsingen en 
bochten vertraagde en versnelde het voertuig onregelmatig en 
ging het uit de rijstrook. Ook was stoppen voor het verkeers-
licht op de juiste plek vaak een probleem door een te simpele 
afbouwfunctie. 

> Het draadloze veiligheidssysteem had te weinig bereik, waardoor 
het voertuig voortijdig stopte.  

> De centerline tracker en rijstrookdetector waren gevoelig voor 
de camerapositie op het voertuig, waardoor de ZED X meerdere 
keren verplaatst moest worden met een niet-optimale montage 
tot gevolg.  

  
Aanbevelingen voor verbetering 
Het huidige systeem vormt een solide basis, zoals blijkt uit de winst 
van de 2024 SDC open-categorie. Op basis van testdata en resulta-
ten op de dag van de challenge hebben we een lijst aanbevelingen 
voor volgende SDC-edities. We verwachten dat deze aanbevelingen 
ons systeem verbeteren.  
De eerste twee problemen hierboven zijn beide gerelateerd aan presta-
tiebeperkingen van de ML-detectoren. Reactietijd kan worden verbeterd 
door nieuwere modelarchitecturen te gebruiken met kleinere modellen 
en vergelijkbare nauwkeurigheid. Foute detecties kunnen worden verbe-
terd door bestaande modellen te fine-tunen op meer representatieve 
data. Deze updates kunnen het navigatiesysteem verbeteren, maar we 
verwachten vooral winst door het huidige per-frame planningssysteem 
van de Think-taak (zie punt drie) te verbeteren. Door temporale infor-
matie op te nemen in een wereldmodel wordt de besturing soepeler 
en consistenter. Ook kun je met het global-model valse detecties filte-
ren, wat nu eenmaal bij ML hoort [18]. 
Een planningssysteem op basis van een occupancy grid kan gebruikt 
worden: alle informatie uit de Sense-module wordt in één wereldmodel 
gebracht, geprojecteerd op een grid waarin elke cel een kostenwaarde 
heeft. Een planningsalgoritme plant een route met de laagste kosten 
om de navigatiedoelen te optimaliseren. Zo’n occupancy grid maakt 
het navigatiesysteem robuuster doordat verleden en heden samen 
gebruikt worden, in plaats van alleen de huidige tijdstap. Dit biedt 
sterkere navigatie in moeilijke situaties. 
Probleem 4 kan worden opgelost door het noodstopsysteem te vervan-
gen door een versie met minimaal 400 m bereik. De camerapositie 
(probleem 5) kan worden opgelost met een nieuwe camerabeugel 
die in de rijrichting verstelbaar is. 
  
Richting nieuwere systemen 
Belangrijke spelers zoals Tesla bewegen steeds meer richting leer-ge-
baseerde in plaats van regel-gebaseerde beslissingen. Werk als [19] en 
[20] vervangt de volledige Sense-taak door een enkele hydranet ML om 
een robuust global-model en occupancy grid te maken. Ook end-to-
end methoden die de hele Sense, Think, Act-architectuur vervangen 
door één hydranet ML-model (zoals die van NVIDIA) laten zien dat 
betrouwbaar autonoom rijden mogelijk is in veel scenario’s [21][22]
[23]. Toekomstige SDC-teams kunnen deze trends onderzoeken om 
het huidige expliciete systeem sterk te verbeteren. In dit artikel hebben 
we de ingrediënten gegeven voor een redelijke kans op succes. Maar 
het blijft veel werk, expertise en inzet van het team.

240677-03

Over de Auteur

Edwin van den Oetelaar is technicus en docent 
aan Fontys ICT in Nederland. Hij maakt deel uit 
van de onderzoeksgroep High Tech Embedded 
Software onder leiding van prof. Teade Punter. Hij 

is specialist in hardware- en softwareontwikkeling en werkt graag 
samen met studenten aan uitdagende projecten zoals zelfrijdende 
auto’s en robots. 

Sieuwe Elferink is gastonderzoeker bij de onder-
zoeksgroep High Tech Embedded Software en 
oprichter/eigenaar van MultiRotorResearch / MRR 
Drones. Hij behaalde een master in robotica en AI, 

met specialisatie in slimme navigatiesystemen en AI-gebaseerde 
besluitvorming. Zijn onderzoek richt zich zowel op autonome drones 
als zelfrijdende voertuigen. 

Teade Punter is lector High Tech Embedded 
Software aan Fontys ICT in Nederland. Zijn 
onderzoeksgroep doet toegepast onderzoek 
naar data-engineering, digital twinning en AI voor 

slimme systeemontwikkeling, met toepassingen in smart industry en 
demontage, zelfrijdende laboratoria voor chemie, energiesystemen 
en autonoom rijden. 

Vragen of opmerkingen?
Hebt u technische vragen of opmerkingen naar aanleiding van 
dit artikel? Stuur een e-mail naar de redactie van Elektor via 
redactie@elektor.com. 

  Gerelateerd Product

> reComputer J1020 v2 – Edge AI-apparaat 
met NVIDIA Jetson Nano (4 GB) 
www.elektor.nl/20968 
met NVIDIA Jetson Nano (4 GB) 

  januari/februari 2026   107

E.L.W. Oetelaar - 1403



[1] Wikipedia, Citron / CC-BY-SA-3.0: https://commons.wikimedia.org/wiki/File:Renault_Twizy.jpg
[2] “Jetson Orin AGX: High-performance AI computing for edge devices,” 2024, NVIDIA: https://tinyurl.com/nvidia-jetson-orin
[3] “MAQ473: 9-Bit to 14-Bit MagAlpha Automotive Angle Sensor with ABZ Incremental and PWM Outputs,” 2024, Monolithic Power 

Systems: https://www.monolithicpower.com/en/products/automotive-aecq-grade/sensors/maq473.html
[4] Eclipse Foundation, “Eclipse Zenoh: Zero overhead pub/sub, store/query and compute,” 2024, GitHub: 

https://github.com/eclipse-zenoh/zenoh
[5] ZED X: Industriële stereocamera voor ruimtelijke perceptie, Stereolabs Inc.: https://www.stereolabs.com/en-nl/products/zed-x
[6] Siegel, M., “The sense-think-act paradigm revisited,” 1st International Workshop on Robotic Sensing, 2003, IEEE: 

https://doi.org/10.1109/ROSE.2003.1218700
[7] Claussmann, L., Revilloud, M., Gruyer, D., & Glaser, S., A review of motion planning for highway autonomous driving, IEEE 

Transactions on Intelligent Transportation Systems: https://doi.org/10.1109/TITS.2019.2913998
[8] Pendleton, S. D., et al., “Perception, planning, control, and coordination for autonomous vehicles,” Machines, 5(1), Article 6: 

https://doi.org/10.3390/machines5010006
[9] O’Mahony, N., et al., “Deep learning vs. traditional computer vision,” arXiv : https://doi.org/10.48550/arXiv.1910.13796
[10] Han, C., et al., “YOLOPv2: Better, faster, stronger for panoptic driving perception,” 2022, arXiv: 

https://doi.org/10.48550/arXiv.2208.11434
[11] Tesla’s HydraNet - How Tesla’s Autopilot works, Think Autonomous: 

https://www.thinkautonomous.ai/blog/how-tesla-autopilot-works/
[12] Syazvinski, Traffic Light Detection and Color Classification Using Yolo v8, GitHub: 

https://github.com/Syazvinski/Traffic-Light-Detection-Color-Classification
[13] Flucus, Traffic Sign Detection AI, GitHub: https://github.com/Flucus/Traffic-Sign-Detection-AI
[14] AI vision for everyone, Ultralytics: https://ultralytics.com
[15] Xue, Y., “An overview of overfitting and its solutions,” Journal of Physics: Conference Series, 1168(2), 022022, 2019, IOPScience: 

https://doi.org/10.1088/1742-6596/1168/2/022022
[16] Dosovitskiy, A., et al., “CARLA: An open urban driving simulator,” 2017, arXiv: https://doi.org/10.48550/arXiv.1711.03938
[17] What is machine learning inference, Hazelcast: https://tinyurl.com/hazelcast-machine-learning
[18] Sapkota, R., et al., “Comprehensive performance evaluation of YOLO11, YOLOv10, YOLOv9, and YOLOv8 on detecting and 

counting fruitlet in complex orchard environments,” 2024, arXiv: https://doi.org/10.48550/arXiv.2407.12040
[19] Xu, H., et al., “A survey on occupancy perception for autonomous driving: The information fusion perspective,” 2024, arXiv: 

https://arxiv.org/abs/2405.05173
[20] OpenDriveLab, OccNet: Scene as Occupancy [Code], GitHub: https://github.com/OpenDriveLab/OccNet
[21] Zhou, H., et al., “Review of learning-based longitudinal motion planning for autonomous vehicles: Research gaps between self-

driving and traffic congestion,” 2021, arXiv: https://doi.org/10.48550/arXiv.1910.06070
[22] Li, Z., et al., “Hydra-MDP: End-to-end multimodal planning with multi-target Hydra-distillation,” 2024, arXiv: 

https://doi.org/10.48550/arXiv.2406.06978
[23] Singh, K., “Tesla FSD V12.5.5 adds end-to-end highway stack; Tesla teases upcoming features,” 2024, Not A Tesla App: 

https://tinyurl.com/tesla-fsd-v1255

WEBLINKS

108   januari/februari 2026   www.elektormagazine.nl

E.L.W. Oetelaar - 1403




