Zenoh Node Implementation
Bridging Modern Pub/Sub Communication with Embedded CAN Systems

Autonomous Vehicle Project Documentation

January 2026

Abstract

This document describes the implementation of a Zenoh communication node within
the autonomous vehicle project’s CAN subsystem. The vehicle’s primary communication
architecture is built upon Zenoh, providing flexible pub/sub messaging between high-level
systems. This document details the extension of this architecture to include CAN bus sup-
port, enabling communication with legacy automotive components and low-level embedded
controllers. We cover the integration challenges, including vendoring the zenoh-pico library
and implementing custom serialization protocols, while providing an overview of both Zenoh
and CAN 2.0 protocols and their fundamental differences.

Contents
1__Introductionl 3
1.1 Architectural Philosophy|. . . . . . . . . .. .. oo oo 3
1.2 Why Add CAN Support?] . . . . . . . . 4
|2 Understanding CAN 2.0| 4
BT OVEIVIEW . o o o oo e e e 4
2.2 CAN Frame Structurel . . . . . . . . . . . . . e e 4
2.3 Key CAN Characteristics| . . . . . . . . . . . . . i 5
2.4 CAN Bus Topology|. . . . . . . . . . . o 5
I3 Understanding Zenoh| 5
BIOVerviewl . . . . . o oo oo 5
3.2 Zenoh Key Concepts| . . . . . . . . . . e 6
3.3 Key Expressions| . . . . . .. .. 6
4 CAN vs Zenoh: A Comparison| 7
4.1 Why Bridge CAN and Zenoh|. . . . . . . . . . . o oo 7
|5 Implementation Details| 7
b.1  Project Structure] . . . . . . . .. 7
5.2 Vendoring zenoh-pico|. . . . . . . . .. e 8
[6.2.1  Why Vendor?| . . . . .. . . ... 8
[5.2.2  Vendoring Process| . . . . . . . . . . . 8
[6.2.3  CMake Integration| . . . . . . . . . ... .. Lo 8
b3 Custom Zenoh Serialization| . . . . . . . . . .. oL o 9
(.3, [he Need for Custom Serializationl . . . . . . .. . .. ... ... ..... 9
[6.3.2  Serialization Implementation| . . . . . . . ... .. 00000 9
5.4 Zenoh Node Core Implementation|. . . . . . . .. ... ... .. ... .. ..... 11
.5 Data Flow Architecturel . . . . . . . . . . ... ... . 13



|6 Configuration|

6.1  Kconfig Options|. . . . .

7 Perh Consid oIS

7.1  Optimization Strategies|

I8 Conclusionl

IA_References|

13
13

14
14

14

15



1 Introduction

The autonomous vehicle project is built on a Zenoh-based communication architecture, which
serves as the backbone for all inter-component messaging. Zenoh was chosen as the primary
protocol due to its flexibility, support for various transport mechanisms, and seamless integration
with ROS2 ecosystems.

However, many automotive-grade sensors, actuators, and embedded controllers communicate
exclusively via CAN bus—the de facto standard in vehicle electronics. To leverage these com-
ponents without abandoning our Zenoh-centric architecture, we implemented a bridge node that
extends Zenoh’s reach into the CAN domain.

This document describes the Zenoh node implementation located in src/CAN/components/zenoh-node,
which serves as a bidirectional bridge between our existing Zenoh network and newly integrated
CAN bus peripherals.

Planning Perception Control
System System System

A

Existing

~

‘ Zenoh Network (Primary Architecture) ’

A

-

{ Zenoh-CAN }

Bridge Node

A

b Jauw Addition
HOoH

e W

‘ CAN 2.0 Bus (Extended Support) ’

A

Motor Sonar Brake

ECU ECU ECU
Figure 1: System architecture: Zenoh serves as the primary communication layer, with CAN
support added via a bridge node

1.1 Architectural Philosophy

The vehicle’s communication architecture follows a Zenoh-first approach:



Design Principles

1. Zenoh is the primary and preferred communication protocol

[ 2. All high-level systems communicate exclusively via Zenoh

3. CAN is added as a secondary interface for hardware compatibility

| 2 e

[4. CAN messages are transparently mapped to Zenoh key expressions

[5. Applications remain unaware of underlying transport (CAN vs native Zenoh)}

Figure 2: Zenoh-first architectural principles

1.2 Why Add CAN Support?

While Zenoh provides excellent capabilities for modern distributed systems, CAN bus support
was added for the following reasons:

e Hardware Compatibility: Many automotive-grade sensors and actuators only support
CAN

e Industry Standards: CAN is mandated for certain automotive safety systems

e Cost Effectiveness: CAN-based components are often more affordable and readily avail-
able

¢ Real-time Guarantees: CAN provides deterministic timing for safety-critical operations

e Existing Ecosystem: Leverage existing CAN-based ECUs without firmware modifica-
tions

2 Understanding CAN 2.0

2.1 Overview

Controller Area Network (CAN) is a robust serial communication protocol originally developed
by Bosch in the 1980s for automotive applications. CAN 2.0 defines two frame formats:

e CAN 2.0A: Standard frame with 11-bit identifier
e CAN 2.0B: Extended frame with 29-bit identifier

2.2 CAN Frame Structure

CAN 2.0A Standard Frame:

SOF Identifier II)‘];FER DLC Data Field CRC ACK
1 bit 11 bits 0 |4 bits 0-8 bytes 15 bits EOF

Figure 3: CAN 2.0A standard frame format



2.3 Key CAN Characteristics

Characteristic Value /Description

Maximum Data Size 8 bytes per frame

Bus Speed Up to 1 Mbit/s

Arbitration Priority-based (lower ID = higher priority)
Error Detection CRC, bit stuffing, frame check

Topology Linear bus with termination resistors
Maximum Nodes Typically 32-127 nodes

Maximum Length ~40m at 1 Mbit/s, ~1km at 50 kbit/s

Table 1: CAN 2.0 key characteristics

2.4 CAN Bus Topology

CAN_ H / CAN_L (Differential Pair)

E B B B
gl I

12082 12002

Figure 4: CAN bus topology with termination resistors

3 Understanding Zenoh

3.1 Overview

Zenoh (pronounced “zee-noh”) is a modern pub/sub/query protocol designed for edge computing,
IoT, and robotics applications. Developed by ZettaScale Technology, Zenoh provides:

e Unified communication: Pub/Sub, Query/Reply, and distributed storage
e Location transparency: Data can be accessed regardless of where it resides
e Protocol flexibility: Works over TCP, UDP, WebSocket, serial, and more

e Minimal overhead: Designed for constrained devices (zenoh-pico)



3.2 Zenoh Key Concepts

Key Expression Matching

i S ’ put() ‘ Zenoh ’ callback() ‘ Subscrib
: ublisher ’ ‘ Router,/Peer ’ ‘ ubscriber
- - key:~ “"vehicle/speed* """ """ T T T T T T T T T T T T oo oSS o oo oo o oo oSS m oo oo key:~ ~"vehicle/®+"~~~~
get()/reply()
Queryable
(Storage)

Figure 5: Zenoh communication paradigm

3.3 Key Expressions

Zenoh uses hierarchical key expressions similar to MQTT topics but with more powerful wild-
cards:

# Exact match
vehicle/speed

# Single-level wildcard (%)
vehicle/*/temperature

7| # Multi-level wildcard (xx*)
s| vehicle/** # Matches all under vehicle/

10| # Complex expressions
11| vehicle/sensor/[0-9]+ # Regex support

Listing 1: Zenoh key expression examples



4 CAN vs Zenoh: A Comparison

Aspect CAN 2.0 Zenoh
Data Model [ Message-based (ID + Data) ] [ Key-Value (Pub/Sub) J
Max Payload [ 8 bytes ] [ Unlimited (chunked) J
Addressing [ 11/29-bit numeric ID ] [ Hierarchical strings J
Discovery [ Implicit (ID filtering) ] [ Automatic peer discovery J
Topology [ Bus (physical) } [ Mesh /P2P (logical) J
QoS [ Priority via ID ] [ Configurable reliability }
Latency [ Microseconds ] [ Milliseconds (typical) }

Figure 6: Comparison between CAN 2.0 and Zenoh protocols

4.1 Why Bridge CAN and Zenoh?

CAN Strengths Zenoh Strengths
[ Real-time guarantees ] [ Rich data semantics ]
[ Deterministic latency ] [ Flexible routing j
[Hardware error handlingj [ Large payload support j
[Proven automotive standard] [Easy integration with ROSQJ

Bridge combines
both strengths

Figure 7: Rationale for bridging CAN and Zenoh

5 Implementation Details

5.1 Project Structure

The Zenoh node is implemented as an ESP-IDF component with the following structure:

1| src/CAN/ components/zenoh-node/

2| | -- CMakeLists.txt # Build configuration

3| |-- Kconfig # ESP-IDF configuration options
4] | -- include/

s | | -- zenoh_node.h # Public API



| +-- zenoh_serialize.h # Serialization interface

| -- src/
| |-- zenoh_node.c # Main implementation
| +-- zenoh_serialize.c # Custom serialization
+-- vendor/
+-- zenoh-pico/ # Vendored zenoh-pico library

Listing 2: Directory structure of zenoh-node component

5.2 Vendoring zenoh-pico

5.2.1 Why Vendor?

The zenoh-pico library needed to be vendored (included directly in the project) for several

reasons:

Reasons for Vendoring zenoh-pico

[1. ESP-IDF component integration requires specific build structure]

2. Custom platform adaptations for FreeRTOS/ESP32

3. Version pinning for reproducible builds

4. Patches for ESP32-specific WiFi/network stack

5. Reduced external dependencies in embedded context

N N N Y

|/ 2 N

Figure 8: Reasons for vendoring zenoh-pico

5.2.2 Vendoring Process

# Clone zenoh-pico at specific version

git clone --depth 1 --branch 0.11.0 \
https://github.com/eclipse-zenoh/zenoh-pico.git \
vendor/zenoh-pico

# Remove git history to reduce size
rm -rf vendor/zenoh-pico/.git

# Apply ESP-IDF specific patches
patch -pl < patches/zenoh-pico-esp-idf.patch

Listing 3: Steps to vendor zenoh-pico

5.2.3 CMake Integration

idf_component_register(
SRCS
"src/zenoh_node.c"
"src/zenoh_serialize.c"
INCLUDE_DIRS
"include"




7 "vendor/zenoh-pico/include"

8 REQUIRES

9 esp_wifi
10 esp_netif
11 nvs_flash
12 PRIV_REQUIRES
13 can_driver
14])

16| # Add zenoh-pico sources

17| file (GLOB_RECURSE ZENOH_PICO_SRCS

18 "vendor/zenoh-pico/src/*.c")

10| target_sources (${COMPONENT_LIB} PRIVATE ${ZENOH_PICO_SRCS})

= o

# Zenoh-pico configuration
target_compile_definitions (${COMPONENT_LIB} PUBLIC
ZENOH_ESP32
Z_FEATURE_PUBLICATION=1
Z_FEATURE_SUBSCRIPTION=1
Z_FEATURE_QUERY=1

NN NN N NN
S ot s W N

~
~

Listing 4: CMakeLists.txt for zenoh-node component

5.3 Custom Zenoh Serialization
5.3.1 The Need for Custom Serialization

Standard Zenoh payloads are opaque byte arrays. For structured communication with CAN
messages, we implemented a custom serialization layer:

CAN Message Serialization @ Wire Format

ID (32-bit)

ID (4 bytes, LE)

DLC (8-bit) —> DLC (1 byte)

Total: 16 bytes

Flags (1 byte)

Datal[8] Reserved (2 bytes)

Data (8 bytes)

Flags

Figure 9: CAN message serialization format

5.3.2 Serialization Implementation

#ifndef ZENOH_SERIALIZE_H
#define ZENOH_SERIALIZE_H

#include <stdint.h>
#include <stddef .h>
6| #include "can_types.h"

cUR W N e

s| #define ZENOH_CAN_MSG_SIZE 16

10| typedef struct __attribute__ ((packed)) {




11 uint32_t id; // CAN identifier

12 uint8_t dlc; // Data length code

13 uint8_t flags; // Extended ID, RTR, etc.
14 uintl16_t reserved; // Alignment padding

15 uint8_t datal[8]; // CAN data payload
16|} zenoh_can_frame_t;

17

18] / **

19| * Serialize a CAN message for Zenoh transmission
20/ * Q@param msg Source CAN message

21| * Qparam buf Destination buffer (min 16 bytes)
22| * Q@param buf_len Buffer length

23| * Qreturn Number of bytes written, or -1 on error
24| */

25 int zenoh_serialize_can_msg(

26 const can_message_t *msg,

27 uint8_t x*buf,

28 size_t buf_len

29() 3

30

31| /**

32| * Deserialize a Zenoh payload to CAN message
33| * Qparam buf Source buffer

34| * @param buf_len Buffer length

35/ * Q@param msg Destination CAN message

36| * @return O on success, -1 on error

37| */

38| int zenoh_deserialize_can_msg/(

39 const uint8_t x*xbuf,

40 size_t buf_len,

41 can_message_t *msg

42() 3

43

44| #endif // ZENOH_SERIALIZE_H

Listing 5: zenoh serialize.h - Serialization interface

-

#include "zenoh_serialize.h"
#include <string.h>

AW N

int zenoh_serialize_can_msg(
const can_message_t *msg,

o

6 uint8_t x*buf,

7 size_t buf_len)

sl {

9 if (!'msg || !'buf || buf_len < ZENOH_CAN_MSG_SIZE) {
10 return -1;

11 }

12

13 zenoh_can_frame_t *frame = (zenoh_can_frame_t *)buf;
14

15 // Use little-endian for cross-platform compatibility
16 frame->id = msg->identifier;

17 frame->dlc = msg->data_length_code;

18 frame->flags = 0;

19

20 if (msg->extd) {

21 frame->flags |= 0x01; // Extended ID flag

22 }

23 if (msg->rtr) {

24 frame->flags |= 0x02; // RTR flag

25 }

26

27 frame->reserved = 0;

10




= o

ST NI X

W oW NN NN NN NN NN
= O © 0 N O

w
]

memcpy (frame ->data, msg->data, 8);

return ZENOH_CAN_MSG_SIZE;

int zenoh_deserialize_can_msg(
const uint8_t x*buf,
size_t buf_len,
can_message_t *msg)

{
if ('buf || !'msg || buf_len < ZENOH_CAN_MSG_SIZE) A{
return -1;
}
const zenoh_can_frame_t *xframe =
(const zenoh_can_frame_t *)buf;
msg->identifier = frame->id;
msg->data_length_code = frame->dlc;
msg->extd = (frame->flags & 0x01) !'= 0;
msg->rtr = (frame->flags & 0x02) !'= 0;
memcpy (msg->data, frame->data, 8);
return 0;
}

Listing 6: zenoh serialize.c - Serialization implementation

5.4 Zenoh Node Core Implementation

#include "zenoh_node.h"
#include "zenoh_serialize.h"
#include <zenoh-pico.h>

static z_owned_session_t session;
static z_owned_publisher_t pub_can_rx;

static z_owned_subscriber_t sub_can_tx;

// Key expressions for CAN bridge

#define KE_CAN_RX "vehicle/can/rx" // CAN -> Zenoh
#define KE_CAN_TX "vehicle/can/tx" // Zenoh -> CAN
VEX]

* Callback for messages received from Zenoh to send on CAN

*/

5| void can_tx_callback(const z_sample_t *sample, void *ctx) {

can_message_t msg;

if (zenoh_deserialize_can_msg(
sample ->payload.start,
sample ->payload.len,
&msg) == 0) {
// Forward to CAN bus
can_transmit (&msg) ;

VEX]
* Initialize the Zenoh node
*/
esp_err_t zenoh_node_init (const zenoh_node_config_t #*config) {
// Configure Zenoh

11




z_owned_config_t z_config = z_config_default ();

3

3 if (config->router_addr != NULL) {

36 zp_config_insert(z_loan(z_config),

37 Z_CONFIG_CONNECT_KEY,

38 config->router_addr) ;

39 }

10

11 // Open session

12 if (z_open(&session, z_move(z_config)) < 0) {
13 return ESP_FAIL;

14 }

15

16 // Start read/lease tasks

A7 zp_start_read_task(z_loan(session), NULL);
18 zp_start_lease_task(z_loan(session), NULL);
19

50 // Declare publisher for CAN RX

51 pub_can_rx = z_declare_publisher(

52 z_loan(session),

53 z_keyexpr (KE_CAN_RX),

54 NULL

55 ) 8

57 // Subscribe to CAN TX messages

58 z_owned_closure_sample_t callback =
59 Z_closure(can_tx_callback, NULL, NULL);
60 sub_can_tx = z_declare_subscriber (
61 z_loan(session) ,
62 z_keyexpr (KE_CAN_TX),
63 z_move (callback),
64 NULL
65 ) 8
66
67 return ESP_O0K;
68 }
69
70| /% *
1| * Publish a CAN message to Zenoh
*/

esp_err_t zenoh_publish_can_msg(const can_message_t #*msg) {
uint8_t buf [ZENOH_CAN_MSG_SIZE];

gt W N

if (zenoh_serialize_can_msg(msg, buf, sizeof (buf)) < 0) {
return ESP_FAIL;

~N O

IS BN SIS BEPN S B SN BN |

8 }

9

80 z_publisher_put_options_t options =
81 z_publisher_put_options_default () ;
83 if (z_publisher_put(

84 z_loan(pub_can_rx),

85 buf ,

86 ZENOH_CAN_MSG_SIZE,

87 Loptiomns) < 0) {

88 return ESP_FAIL;

89 }

90

91 return ESP_O0K;

Listing 7: zenoh node.c - Core node implementation (excerpt)

12



-

N

St

19

NN N
= O

gt W N

w w (V) no [\ (V) [V [\
= S © ® N O

5.5 Data Flow Architecture

CAN — Zenoh

CAN
Hardware

Zenoh Node (Bridge)

Serialize

bytes[16]

Zenoh
Publisher

v

Zenoh
Network

Zenoh — CAN

Zenoh
Network

b

Zenoh
Subscriber

bytes[16]

Deserialize

CAN
Driver

CAN
Hardware

Figure 10: Bidirectional data flow through the Zenoh node

6 Configuration

6.1 Kconfig Options

’

menu "Zenoh Node Configuration"

config ZENOH_NODE_ENABLED

bool "Enable Zenoh Node"
default y
help

Enable the Zenoh communication node.

config ZENOH_ROUTER_ADDRESS
string "Zenoh Router Address"
default "tcp/192.168.1.1:7447"
depends on ZENOH_NODE_ENABLED
help
Address of the Zenoh router to connect

config ZENOH_NODE_MODE

int "Zenoh Node Mode"

default O

range 0 2

depends on ZENOH_NODE_ENABLED
help

0 = Client, 1 = Peer, 2 = Router
config ZENOH_PUBLISH_PERIOD_MS

int "Publish period (ms)"

default 100

depends on ZENOH_NODE_ENABLED

help

to.

Period for publishing CAN messages to Zenoh.

endmenu

Listing 8: Kconfig - ESP-IDF menuconfig options

13




7 Performance Considerations

50 T T T T T T T T T %
= CAN Direct R
40l |~  Zenoh (WiFi) o i
- »- CAN+Zenoh Bridge
E 30} |
&
=
L 20+ |
<
3
10 | |
- m/a//ﬂ
0 ! = t £ T =2 | |
0 100 200 300 400 500 600 700 800 900 1,000

Message Rate (msg/s)

Figure 11: Latency comparison under different message rates (illustrative)

7.1 Optimization Strategies
1. Message Batching: Aggregate multiple CAN messages before Zenoh transmission

2. Priority Filtering: Only bridge high-priority CAN IDs
3. Compression: Enable Zenoh payload compression for high-bandwidth scenarios

4. QoS Configuration: Use best-effort for telemetry, reliable for commands

8 Conclusion

The Zenoh node implementation successfully bridges the gap between modern pub/sub commu-
nication systems and traditional CAN networks. Key achievements include:

e Successful integration of vendored zenoh-pico for ESP32
e Custom serialization protocol for efficient CAN message transport
¢ Bidirectional communication enabling high-level system integration

e Configurable operation via ESP-IDF Kconfig

14



Benefits of the Implementation

Seamless ROS2 integration via Zenoh bridge

Retained CAN real-time characteristics

Extensible serialization framework

[ J
[ )
[ Flexible deployment (client/peer/router modes) }
[ )
[ )

Minimal additional latency overhead

Figure 12: Summary of implementation benefits

A References

Zenoh Documentation: https://zenoh.io0/docs/

zenoh-pico GitHub: https://github.com/eclipse-zenoh/zenoh-pico

CAN 2.0 Specification: Bosch CAN Specification Version 2.0

ESP-IDF Programming Guide: https://docs.espressif.com/projects/esp-idf/

15


https://zenoh.io/docs/
https://github.com/eclipse-zenoh/zenoh-pico
https://docs.espressif.com/projects/esp-idf/

	Introduction
	Architectural Philosophy
	Why Add CAN Support?

	Understanding CAN 2.0
	Overview
	CAN Frame Structure
	Key CAN Characteristics
	CAN Bus Topology

	Understanding Zenoh
	Overview
	Zenoh Key Concepts
	Key Expressions

	CAN vs Zenoh: A Comparison
	Why Bridge CAN and Zenoh?

	Implementation Details
	Project Structure
	Vendoring zenoh-pico
	Why Vendor?
	Vendoring Process
	CMake Integration

	Custom Zenoh Serialization
	The Need for Custom Serialization
	Serialization Implementation

	Zenoh Node Core Implementation
	Data Flow Architecture

	Configuration
	Kconfig Options

	Performance Considerations
	Optimization Strategies

	Conclusion
	References

