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Abstract

This document describes the implementation of a Zenoh communication node within
the autonomous vehicle project's CAN subsystem. The vehicle's primary communication
architecture is built upon Zenoh, providing �exible pub/sub messaging between high-level
systems. This document details the extension of this architecture to include CAN bus sup-
port, enabling communication with legacy automotive components and low-level embedded
controllers. We cover the integration challenges, including vendoring the zenoh-pico library
and implementing custom serialization protocols, while providing an overview of both Zenoh
and CAN 2.0 protocols and their fundamental di�erences.
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1 Introduction

The autonomous vehicle project is built on a Zenoh-based communication architecture, which
serves as the backbone for all inter-component messaging. Zenoh was chosen as the primary
protocol due to its �exibility, support for various transport mechanisms, and seamless integration
with ROS2 ecosystems.

However, many automotive-grade sensors, actuators, and embedded controllers communicate
exclusively via CAN bus�the de facto standard in vehicle electronics. To leverage these com-
ponents without abandoning our Zenoh-centric architecture, we implemented a bridge node that
extends Zenoh's reach into the CAN domain.

This document describes the Zenoh node implementation located in src/CAN/components/zenoh-node,
which serves as a bidirectional bridge between our existing Zenoh network and newly integrated
CAN bus peripherals.

Planning
System

Perception
System

Control
System

Zenoh Network (Primary Architecture)

Zenoh-CAN
Bridge Node

CAN 2.0 Bus (Extended Support)

Motor
ECU

Sonar
ECU

Brake
ECU

Existing

New Addition

Figure 1: System architecture: Zenoh serves as the primary communication layer, with CAN
support added via a bridge node

1.1 Architectural Philosophy

The vehicle's communication architecture follows a Zenoh-�rst approach:
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Design Principles

1. Zenoh is the primary and preferred communication protocol

2. All high-level systems communicate exclusively via Zenoh

3. CAN is added as a secondary interface for hardware compatibility

4. CAN messages are transparently mapped to Zenoh key expressions

5. Applications remain unaware of underlying transport (CAN vs native Zenoh)

Figure 2: Zenoh-�rst architectural principles

1.2 Why Add CAN Support?

While Zenoh provides excellent capabilities for modern distributed systems, CAN bus support
was added for the following reasons:

� Hardware Compatibility: Many automotive-grade sensors and actuators only support
CAN

� Industry Standards: CAN is mandated for certain automotive safety systems

� Cost E�ectiveness: CAN-based components are often more a�ordable and readily avail-
able

� Real-time Guarantees: CAN provides deterministic timing for safety-critical operations

� Existing Ecosystem: Leverage existing CAN-based ECUs without �rmware modi�ca-
tions

2 Understanding CAN 2.0

2.1 Overview

Controller Area Network (CAN) is a robust serial communication protocol originally developed
by Bosch in the 1980s for automotive applications. CAN 2.0 de�nes two frame formats:

� CAN 2.0A: Standard frame with 11-bit identi�er

� CAN 2.0B: Extended frame with 29-bit identi�er

2.2 CAN Frame Structure

CAN 2.0A Standard Frame:

SOF
1 bit

Identi�er
11 bits

RTR
IDE
r0

DLC
4 bits

Data Field
0-8 bytes

CRC
15 bits

ACK
EOF

Figure 3: CAN 2.0A standard frame format
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2.3 Key CAN Characteristics

Characteristic Value/Description

Maximum Data Size 8 bytes per frame
Bus Speed Up to 1 Mbit/s
Arbitration Priority-based (lower ID = higher priority)
Error Detection CRC, bit stu�ng, frame check
Topology Linear bus with termination resistors
Maximum Nodes Typically 32-127 nodes
Maximum Length ∼40m at 1 Mbit/s, ∼1km at 50 kbit/s

Table 1: CAN 2.0 key characteristics

2.4 CAN Bus Topology

120Ω 120Ω

ECU 1 ECU 2 ECU 3 ECU 4

CAN_H / CAN_L (Di�erential Pair)

Figure 4: CAN bus topology with termination resistors

3 Understanding Zenoh

3.1 Overview

Zenoh (pronounced �zee-noh�) is a modern pub/sub/query protocol designed for edge computing,
IoT, and robotics applications. Developed by ZettaScale Technology, Zenoh provides:

� Uni�ed communication: Pub/Sub, Query/Reply, and distributed storage

� Location transparency: Data can be accessed regardless of where it resides

� Protocol �exibility: Works over TCP, UDP, WebSocket, serial, and more

� Minimal overhead: Designed for constrained devices (zenoh-pico)
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3.2 Zenoh Key Concepts

Publisher

key: "vehicle/speed"

Zenoh
Router/Peer Subscriber

key: "vehicle/**"

Queryable
(Storage)

put() callback()

get()/reply()

Key Expression Matching

Figure 5: Zenoh communication paradigm

3.3 Key Expressions

Zenoh uses hierarchical key expressions similar to MQTT topics but with more powerful wild-
cards:

1 # Exact match

2 vehicle/speed

3

4 # Single -level wildcard (*)

5 vehicle /*/ temperature

6

7 # Multi -level wildcard (**)

8 vehicle /** # Matches all under vehicle/

9

10 # Complex expressions

11 vehicle/sensor /[0 -9]+ # Regex support

Listing 1: Zenoh key expression examples
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4 CAN vs Zenoh: A Comparison

Aspect CAN 2.0 Zenoh

Data Model Message-based (ID + Data) Key-Value (Pub/Sub)

Max Payload 8 bytes Unlimited (chunked)

Addressing 11/29-bit numeric ID Hierarchical strings

Discovery Implicit (ID �ltering) Automatic peer discovery

Topology Bus (physical) Mesh/P2P (logical)

QoS Priority via ID Con�gurable reliability

Latency Microseconds Milliseconds (typical)

Figure 6: Comparison between CAN 2.0 and Zenoh protocols

4.1 Why Bridge CAN and Zenoh?

CAN Strengths

Real-time guarantees

Deterministic latency

Hardware error handling

Proven automotive standard

Zenoh Strengths

Rich data semantics

Flexible routing

Large payload support

Easy integration with ROS2

Bridge combines
both strengths

Figure 7: Rationale for bridging CAN and Zenoh

5 Implementation Details

5.1 Project Structure

The Zenoh node is implemented as an ESP-IDF component with the following structure:

1 src/CAN/components/zenoh -node/

2 |-- CMakeLists.txt # Build configuration

3 |-- Kconfig # ESP -IDF configuration options

4 |-- include/

5 | |-- zenoh_node.h # Public API
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6 | +-- zenoh_serialize.h # Serialization interface

7 |-- src/

8 | |-- zenoh_node.c # Main implementation

9 | +-- zenoh_serialize.c # Custom serialization

10 +-- vendor/

11 +-- zenoh -pico/ # Vendored zenoh -pico library

Listing 2: Directory structure of zenoh-node component

5.2 Vendoring zenoh-pico

5.2.1 Why Vendor?

The zenoh-pico library needed to be vendored (included directly in the project) for several
reasons:

Reasons for Vendoring zenoh-pico

1. ESP-IDF component integration requires speci�c build structure

2. Custom platform adaptations for FreeRTOS/ESP32

3. Version pinning for reproducible builds

4. Patches for ESP32-speci�c WiFi/network stack

5. Reduced external dependencies in embedded context

Figure 8: Reasons for vendoring zenoh-pico

5.2.2 Vendoring Process

1 # Clone zenoh -pico at specific version

2 git clone --depth 1 --branch 0.11.0 \

3 https :// github.com/eclipse -zenoh/zenoh -pico.git \

4 vendor/zenoh -pico

5

6 # Remove git history to reduce size

7 rm -rf vendor/zenoh -pico/.git

8

9 # Apply ESP -IDF specific patches

10 patch -p1 < patches/zenoh -pico -esp -idf.patch

Listing 3: Steps to vendor zenoh-pico

5.2.3 CMake Integration

1 idf_component_register(

2 SRCS

3 "src/zenoh_node.c"

4 "src/zenoh_serialize.c"

5 INCLUDE_DIRS

6 "include"
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7 "vendor/zenoh -pico/include"

8 REQUIRES

9 esp_wifi

10 esp_netif

11 nvs_flash

12 PRIV_REQUIRES

13 can_driver

14 )

15

16 # Add zenoh -pico sources

17 file(GLOB_RECURSE ZENOH_PICO_SRCS

18 "vendor/zenoh -pico/src /*.c")

19 target_sources(${COMPONENT_LIB} PRIVATE ${ZENOH_PICO_SRCS })

20

21 # Zenoh -pico configuration

22 target_compile_definitions(${COMPONENT_LIB} PUBLIC

23 ZENOH_ESP32

24 Z_FEATURE_PUBLICATION =1

25 Z_FEATURE_SUBSCRIPTION =1

26 Z_FEATURE_QUERY =1

27 )

Listing 4: CMakeLists.txt for zenoh-node component

5.3 Custom Zenoh Serialization

5.3.1 The Need for Custom Serialization

Standard Zenoh payloads are opaque byte arrays. For structured communication with CAN
messages, we implemented a custom serialization layer:

CAN Message

ID (32-bit)

DLC (8-bit)

Data[8]

Flags

Serialization Wire Format

ID (4 bytes, LE)

DLC (1 byte)

Flags (1 byte)

Reserved (2 bytes)

Data (8 bytes)

Total: 16 bytes

Figure 9: CAN message serialization format

5.3.2 Serialization Implementation

1 #ifndef ZENOH_SERIALIZE_H

2 #define ZENOH_SERIALIZE_H

3

4 #include <stdint.h>

5 #include <stddef.h>

6 #include "can_types.h"

7

8 #define ZENOH_CAN_MSG_SIZE 16

9

10 typedef struct __attribute__ (( packed)) {
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11 uint32_t id; // CAN identifier

12 uint8_t dlc; // Data length code

13 uint8_t flags; // Extended ID, RTR , etc.

14 uint16_t reserved; // Alignment padding

15 uint8_t data [8]; // CAN data payload

16 } zenoh_can_frame_t;

17

18 /**

19 * Serialize a CAN message for Zenoh transmission

20 * @param msg Source CAN message

21 * @param buf Destination buffer (min 16 bytes)

22 * @param buf_len Buffer length

23 * @return Number of bytes written , or -1 on error

24 */

25 int zenoh_serialize_can_msg(

26 const can_message_t *msg ,

27 uint8_t *buf ,

28 size_t buf_len

29 );

30

31 /**

32 * Deserialize a Zenoh payload to CAN message

33 * @param buf Source buffer

34 * @param buf_len Buffer length

35 * @param msg Destination CAN message

36 * @return 0 on success , -1 on error

37 */

38 int zenoh_deserialize_can_msg(

39 const uint8_t *buf ,

40 size_t buf_len ,

41 can_message_t *msg

42 );

43

44 #endif // ZENOH_SERIALIZE_H

Listing 5: zenoh_serialize.h - Serialization interface

1 #include "zenoh_serialize.h"

2 #include <string.h>

3

4 int zenoh_serialize_can_msg(

5 const can_message_t *msg ,

6 uint8_t *buf ,

7 size_t buf_len)

8 {

9 if (!msg || !buf || buf_len < ZENOH_CAN_MSG_SIZE) {

10 return -1;

11 }

12

13 zenoh_can_frame_t *frame = (zenoh_can_frame_t *)buf;

14

15 // Use little -endian for cross -platform compatibility

16 frame ->id = msg ->identifier;

17 frame ->dlc = msg ->data_length_code;

18 frame ->flags = 0;

19

20 if (msg ->extd) {

21 frame ->flags |= 0x01; // Extended ID flag

22 }

23 if (msg ->rtr) {

24 frame ->flags |= 0x02; // RTR flag

25 }

26

27 frame ->reserved = 0;
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28 memcpy(frame ->data , msg ->data , 8);

29

30 return ZENOH_CAN_MSG_SIZE;

31 }

32

33 int zenoh_deserialize_can_msg(

34 const uint8_t *buf ,

35 size_t buf_len ,

36 can_message_t *msg)

37 {

38 if (!buf || !msg || buf_len < ZENOH_CAN_MSG_SIZE) {

39 return -1;

40 }

41

42 const zenoh_can_frame_t *frame =

43 (const zenoh_can_frame_t *)buf;

44

45 msg ->identifier = frame ->id;

46 msg ->data_length_code = frame ->dlc;

47 msg ->extd = (frame ->flags & 0x01) != 0;

48 msg ->rtr = (frame ->flags & 0x02) != 0;

49 memcpy(msg ->data , frame ->data , 8);

50

51 return 0;

52 }

Listing 6: zenoh_serialize.c - Serialization implementation

5.4 Zenoh Node Core Implementation

1 #include "zenoh_node.h"

2 #include "zenoh_serialize.h"

3 #include <zenoh -pico.h>

4

5 static z_owned_session_t session;

6 static z_owned_publisher_t pub_can_rx;

7 static z_owned_subscriber_t sub_can_tx;

8

9 // Key expressions for CAN bridge

10 #define KE_CAN_RX "vehicle/can/rx" // CAN -> Zenoh

11 #define KE_CAN_TX "vehicle/can/tx" // Zenoh -> CAN

12

13 /**

14 * Callback for messages received from Zenoh to send on CAN

15 */

16 void can_tx_callback(const z_sample_t *sample , void *ctx) {

17 can_message_t msg;

18

19 if (zenoh_deserialize_can_msg(

20 sample ->payload.start ,

21 sample ->payload.len ,

22 &msg) == 0) {

23 // Forward to CAN bus

24 can_transmit (&msg);

25 }

26 }

27

28 /**

29 * Initialize the Zenoh node

30 */

31 esp_err_t zenoh_node_init(const zenoh_node_config_t *config) {

32 // Configure Zenoh
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33 z_owned_config_t z_config = z_config_default ();

34

35 if (config ->router_addr != NULL) {

36 zp_config_insert(z_loan(z_config),

37 Z_CONFIG_CONNECT_KEY ,

38 config ->router_addr);

39 }

40

41 // Open session

42 if (z_open (&session , z_move(z_config)) < 0) {

43 return ESP_FAIL;

44 }

45

46 // Start read/lease tasks

47 zp_start_read_task(z_loan(session), NULL);

48 zp_start_lease_task(z_loan(session), NULL);

49

50 // Declare publisher for CAN RX

51 pub_can_rx = z_declare_publisher(

52 z_loan(session),

53 z_keyexpr(KE_CAN_RX),

54 NULL

55 );

56

57 // Subscribe to CAN TX messages

58 z_owned_closure_sample_t callback =

59 z_closure(can_tx_callback , NULL , NULL);

60 sub_can_tx = z_declare_subscriber(

61 z_loan(session),

62 z_keyexpr(KE_CAN_TX),

63 z_move(callback),

64 NULL

65 );

66

67 return ESP_OK;

68 }

69

70 /**

71 * Publish a CAN message to Zenoh

72 */

73 esp_err_t zenoh_publish_can_msg(const can_message_t *msg) {

74 uint8_t buf[ZENOH_CAN_MSG_SIZE ];

75

76 if (zenoh_serialize_can_msg(msg , buf , sizeof(buf)) < 0) {

77 return ESP_FAIL;

78 }

79

80 z_publisher_put_options_t options =

81 z_publisher_put_options_default ();

82

83 if (z_publisher_put(

84 z_loan(pub_can_rx),

85 buf ,

86 ZENOH_CAN_MSG_SIZE ,

87 &options) < 0) {

88 return ESP_FAIL;

89 }

90

91 return ESP_OK;

92 }

Listing 7: zenoh_node.c - Core node implementation (excerpt)
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5.5 Data Flow Architecture

CAN → Zenoh

CAN
Hardware

CAN
Driver

Serialize

Zenoh
Publisher

Zenoh
Network

can_message_t

bytes[16]

Zenoh → CAN

Zenoh
Network

Zenoh
Subscriber

Deserialize

CAN
Driver

CAN
Hardware

bytes[16]

can_message_t

Zenoh Node (Bridge)

Figure 10: Bidirectional data �ow through the Zenoh node

6 Con�guration

6.1 Kcon�g Options

1 menu "Zenoh Node Configuration"

2

3 config ZENOH_NODE_ENABLED

4 bool "Enable Zenoh Node"

5 default y

6 help

7 Enable the Zenoh communication node.

8

9 config ZENOH_ROUTER_ADDRESS

10 string "Zenoh Router Address"

11 default "tcp /192.168.1.1:7447"

12 depends on ZENOH_NODE_ENABLED

13 help

14 Address of the Zenoh router to connect to.

15

16 config ZENOH_NODE_MODE

17 int "Zenoh Node Mode"

18 default 0

19 range 0 2

20 depends on ZENOH_NODE_ENABLED

21 help

22 0 = Client , 1 = Peer , 2 = Router

23

24 config ZENOH_PUBLISH_PERIOD_MS

25 int "Publish period (ms)"

26 default 100

27 depends on ZENOH_NODE_ENABLED

28 help

29 Period for publishing CAN messages to Zenoh.

30

31 endmenu

Listing 8: Kcon�g - ESP-IDF menucon�g options
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7 Performance Considerations

0 100 200 300 400 500 600 700 800 900 1,000
0

10

20

30

40

50

Message Rate (msg/s)

L
at
en
cy

(m
s)

CAN Direct

Zenoh (WiFi)
CAN+Zenoh Bridge

Figure 11: Latency comparison under di�erent message rates (illustrative)

7.1 Optimization Strategies

1. Message Batching: Aggregate multiple CAN messages before Zenoh transmission

2. Priority Filtering: Only bridge high-priority CAN IDs

3. Compression: Enable Zenoh payload compression for high-bandwidth scenarios

4. QoS Con�guration: Use best-e�ort for telemetry, reliable for commands

8 Conclusion

The Zenoh node implementation successfully bridges the gap between modern pub/sub commu-
nication systems and traditional CAN networks. Key achievements include:

� Successful integration of vendored zenoh-pico for ESP32

� Custom serialization protocol for e�cient CAN message transport

� Bidirectional communication enabling high-level system integration

� Con�gurable operation via ESP-IDF Kcon�g
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Bene�ts of the Implementation

Seamless ROS2 integration via Zenoh bridge

Retained CAN real-time characteristics

Flexible deployment (client/peer/router modes)

Extensible serialization framework

Minimal additional latency overhead

Figure 12: Summary of implementation bene�ts
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