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Abstract

This document describes the implementation of a Zenoh communication node within
the autonomous vehicle project’s CAN subsystem. The vehicle’s primary communication
architecture is built upon Zenoh, providing flexible pub/sub messaging between high-level
systems. This document details the extension of this architecture to include CAN bus sup-
port, enabling communication with legacy automotive components and low-level embedded
controllers. We cover the integration challenges, including vendoring the zenoh-pico library
and implementing custom serialization protocols, while providing an overview of both Zenoh
and CAN 2.0 protocols and their fundamental differences.

Contents
1__Introductionl 3
1.1 Architectural Philosophy|. . . . . . . . . .. .. oo oo 3
1.2 Why Add CAN Support?] . . . . . . . . 4
|2 Understanding CAN 2.0| 4
BT OVEIVIEW . o o o oo e e e 4
2.2 CAN Frame Structurel . . . . . . . . . . . . . e e 4
2.3 Key CAN Characteristics| . . . . . . . . . . . . . i 5
2.4 CAN Bus Topology|. . . . . . . . . . . o 5
I3 Understanding Zenoh| 5
BIOVerviewl . . . . . o oo oo 5
3.2 Zenoh Key Concepts| . . . . . . . . . . e 6
3.3 Key Expressions| . . . . . .. .. 6
4 CAN vs Zenoh: A Comparison| 7
4.1 Why Bridge CAN and Zenoh|. . . . . . . . . . . o oo 7
|5 Implementation Details| 7
b.1  Project Structure] . . . . . . . .. 7
5.2 Vendoring zenoh-pico|. . . . . . . . .. e 8
[6.2.1  Why Vendor?| . . . . .. . . ... 8
[5.2.2  Vendoring Process| . . . . . . . . . . . 8
[6.2.3  CMake Integration| . . . . . . . . . ... .. Lo 8
b3 Custom Zenoh Serialization| . . . . . . . . . .. oL o 9
(.3, [he Need for Custom Serializationl . . . . . . .. . .. ... ... ..... 9
[6.3.2  Serialization Implementation| . . . . . . . ... .. 00000 9
5.4 Zenoh Node Core Implementation|. . . . . . . .. ... ... .. ... .. ..... 11
.5 Data Flow Architecturel . . . . . . . . . . ... ... . 13



|6 Configuration|

6.1  Kconfig Options|. . . . .

7 Perh Consid oIS

7.1  Optimization Strategies|

I8 Conclusionl

IA_References|

13
13

14
14

14

15



1 Introduction

The autonomous vehicle project is built on a Zenoh-based communication architecture, which
serves as the backbone for all inter-component messaging. Zenoh was chosen as the primary
protocol due to its flexibility, support for various transport mechanisms, and seamless integration
with ROS2 ecosystems.

However, many automotive-grade sensors, actuators, and embedded controllers communicate
exclusively via CAN bus—the de facto standard in vehicle electronics. To leverage these com-
ponents without abandoning our Zenoh-centric architecture, we implemented a bridge node that
extends Zenoh’s reach into the CAN domain.

This document describes the Zenoh node implementation located in src/CAN/components/zenoh-node,
which serves as a bidirectional bridge between our existing Zenoh network and newly integrated
CAN bus peripherals.
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Figure 1: System architecture: Zenoh serves as the primary communication layer, with CAN
support added via a bridge node

1.1 Architectural Philosophy

The vehicle’s communication architecture follows a Zenoh-first approach:



Design Principles

1. Zenoh is the primary and preferred communication protocol

[ 2. All high-level systems communicate exclusively via Zenoh

3. CAN is added as a secondary interface for hardware compatibility

| 2 e

[4. CAN messages are transparently mapped to Zenoh key expressions

[5. Applications remain unaware of underlying transport (CAN vs native Zenoh)}

Figure 2: Zenoh-first architectural principles

1.2 Why Add CAN Support?

While Zenoh provides excellent capabilities for modern distributed systems, CAN bus support
was added for the following reasons:

e Hardware Compatibility: Many automotive-grade sensors and actuators only support
CAN

e Industry Standards: CAN is mandated for certain automotive safety systems

e Cost Effectiveness: CAN-based components are often more affordable and readily avail-
able

¢ Real-time Guarantees: CAN provides deterministic timing for safety-critical operations

e Existing Ecosystem: Leverage existing CAN-based ECUs without firmware modifica-
tions

2 Understanding CAN 2.0

2.1 Overview

Controller Area Network (CAN) is a robust serial communication protocol originally developed
by Bosch in the 1980s for automotive applications. CAN 2.0 defines two frame formats:

e CAN 2.0A: Standard frame with 11-bit identifier
e CAN 2.0B: Extended frame with 29-bit identifier

2.2 CAN Frame Structure

CAN 2.0A Standard Frame:

SOF Identifier II)‘];FER DLC Data Field CRC ACK
1 bit 11 bits 0 |4 bits 0-8 bytes 15 bits EOF

Figure 3: CAN 2.0A standard frame format



2.3 Key CAN Characteristics

Characteristic Value /Description

Maximum Data Size 8 bytes per frame

Bus Speed Up to 1 Mbit/s

Arbitration Priority-based (lower ID = higher priority)
Error Detection CRC, bit stuffing, frame check

Topology Linear bus with termination resistors
Maximum Nodes Typically 32-127 nodes

Maximum Length ~40m at 1 Mbit/s, ~1km at 50 kbit/s

Table 1: CAN 2.0 key characteristics

2.4 CAN Bus Topology
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Figure 4: CAN bus topology with termination resistors

3 Understanding Zenoh

3.1 Overview

Zenoh (pronounced “zee-noh”) is a modern pub/sub/query protocol designed for edge computing,
IoT, and robotics applications. Developed by ZettaScale Technology, Zenoh provides:

e Unified communication: Pub/Sub, Query/Reply, and distributed storage
e Location transparency: Data can be accessed regardless of where it resides
e Protocol flexibility: Works over TCP, UDP, WebSocket, serial, and more

e Minimal overhead: Designed for constrained devices (zenoh-pico)



3.2 Zenoh Key Concepts

Key Expression Matching
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Figure 5: Zenoh communication paradigm

3.3 Key Expressions

Zenoh uses hierarchical key expressions similar to MQTT topics but with more powerful wild-
cards:

# Exact match
vehicle/speed

# Single-level wildcard (%)
vehicle/*/temperature

7| # Multi-level wildcard (xx*)
s| vehicle/** # Matches all under vehicle/

10| # Complex expressions
11| vehicle/sensor/[0-9]+ # Regex support

Listing 1: Zenoh key expression examples



4 CAN vs Zenoh: A Comparison

Aspect CAN 2.0 Zenoh
Data Model [ Message-based (ID + Data) ] [ Key-Value (Pub/Sub) J
Max Payload [ 8 bytes ] [ Unlimited (chunked) J
Addressing [ 11/29-bit numeric ID ] [ Hierarchical strings J
Discovery [ Implicit (ID filtering) ] [ Automatic peer discovery J
Topology [ Bus (physical) } [ Mesh /P2P (logical) J
QoS [ Priority via ID ] [ Configurable reliability }
Latency [ Microseconds ] [ Milliseconds (typical) }

Figure 6: Comparison between CAN 2.0 and Zenoh protocols

4.1 Why Bridge CAN and Zenoh?

CAN Strengths Zenoh Strengths
[ Real-time guarantees ] [ Rich data semantics ]
[ Deterministic latency ] [ Flexible routing j
[Hardware error handlingj [ Large payload support j
[Proven automotive standard] [Easy integration with ROSQJ

Bridge combines
both strengths

Figure 7: Rationale for bridging CAN and Zenoh

5 Implementation Details

5.1 Project Structure

The Zenoh node is implemented as an ESP-IDF component with the following structure:

1| src/CAN/ components/zenoh-node/

2| | -- CMakeLists.txt # Build configuration

3| |-- Kconfig # ESP-IDF configuration options
4] | -- include/

s | | -- zenoh_node.h # Public API



| +-- zenoh_serialize.h # Serialization interface

| -- src/
| |-- zenoh_node.c # Main implementation
| +-- zenoh_serialize.c # Custom serialization
+-- vendor/
+-- zenoh-pico/ # Vendored zenoh-pico library

Listing 2: Directory structure of zenoh-node component

5.2 Vendoring zenoh-pico

5.2.1 Why Vendor?

The zenoh-pico library needed to be vendored (included directly in the project) for several

reasons:

Reasons for Vendoring zenoh-pico

[1. ESP-IDF component integration requires specific build structure]

2. Custom platform adaptations for FreeRTOS/ESP32

3. Version pinning for reproducible builds

4. Patches for ESP32-specific WiFi/network stack

5. Reduced external dependencies in embedded context

N N N Y

|/ 2 N

Figure 8: Reasons for vendoring zenoh-pico

5.2.2 Vendoring Process

# Clone zenoh-pico at specific version

git clone --depth 1 --branch 0.11.0 \
https://github.com/eclipse-zenoh/zenoh-pico.git \
vendor/zenoh-pico

# Remove git history to reduce size
rm -rf vendor/zenoh-pico/.git

# Apply ESP-IDF specific patches
patch -pl < patches/zenoh-pico-esp-idf.patch

Listing 3: Steps to vendor zenoh-pico

5.2.3 CMake Integration

idf_component_register(
SRCS
"src/zenoh_node.c"
"src/zenoh_serialize.c"
INCLUDE_DIRS
"include"




7 "vendor/zenoh-pico/include"

8 REQUIRES

9 esp_wifi
10 esp_netif
11 nvs_flash
12 PRIV_REQUIRES
13 can_driver
14])

16| # Add zenoh-pico sources

17| file (GLOB_RECURSE ZENOH_PICO_SRCS

18 "vendor/zenoh-pico/src/*.c")

10| target_sources (${COMPONENT_LIB} PRIVATE ${ZENOH_PICO_SRCS})

= o

# Zenoh-pico configuration
target_compile_definitions (${COMPONENT_LIB} PUBLIC
ZENOH_ESP32
Z_FEATURE_PUBLICATION=1
Z_FEATURE_SUBSCRIPTION=1
Z_FEATURE_QUERY=1

NN NN N NN
S ot s W N

~
~

Listing 4: CMakeLists.txt for zenoh-node component

5.3 Custom Zenoh Serialization
5.3.1 The Need for Custom Serialization

Standard Zenoh payloads are opaque byte arrays. For structured communication with CAN
messages, we implemented a custom serialization layer:

CAN Message Serialization @ Wire Format

ID (32-bit)

ID (4 bytes, LE)

DLC (8-bit) —> DLC (1 byte)

Total: 16 bytes

Flags (1 byte)

Datal[8] Reserved (2 bytes)

Data (8 bytes)

Flags

Figure 9: CAN message serialization format

5.3.2 Serialization Implementation

#ifndef ZENOH_SERIALIZE_H
#define ZENOH_SERIALIZE_H

#include <stdint.h>
#include <stddef .h>
6| #include "can_types.h"

cUR W N e

s| #define ZENOH_CAN_MSG_SIZE 16

10| typedef struct __attribute__ ((packed)) {




11 uint32_t id; // CAN identifier

12 uint8_t dlc; // Data length code

13 uint8_t flags; // Extended ID, RTR, etc.
14 uintl16_t reserved; // Alignment padding

15 uint8_t datal[8]; // CAN data payload
16|} zenoh_can_frame_t;

17

18] / **

19| * Serialize a CAN message for Zenoh transmission
20/ * Q@param msg Source CAN message

21| * Qparam buf Destination buffer (min 16 bytes)
22| * Q@param buf_len Buffer length

23| * Qreturn Number of bytes written, or -1 on error
24| */

25 int zenoh_serialize_can_msg(

26 const can_message_t *msg,

27 uint8_t x*buf,

28 size_t buf_len

29() 3

30

31| /**

32| * Deserialize a Zenoh payload to CAN message
33| * Qparam buf Source buffer

34| * @param buf_len Buffer length

35/ * Q@param msg Destination CAN message

36| * @return O on success, -1 on error

37| */

38| int zenoh_deserialize_can_msg/(

39 const uint8_t x*xbuf,

40 size_t buf_len,

41 can_message_t *msg

42() 3

43

44| #endif // ZENOH_SERIALIZE_H

Listing 5: zenoh serialize.h - Serialization interface

-

#include "zenoh_serialize.h"
#include <string.h>

AW N

int zenoh_serialize_can_msg(
const can_message_t *msg,

o

6 uint8_t x*buf,

7 size_t buf_len)

sl {

9 if (!'msg || !'buf || buf_len < ZENOH_CAN_MSG_SIZE) {
10 return -1;

11 }

12

13 zenoh_can_frame_t *frame = (zenoh_can_frame_t *)buf;
14

15 // Use little-endian for cross-platform compatibility
16 frame->id = msg->identifier;

17 frame->dlc = msg->data_length_code;

18 frame->flags = 0;

19

20 if (msg->extd) {

21 frame->flags |= 0x01; // Extended ID flag

22 }

23 if (msg->rtr) {

24 frame->flags |= 0x02; // RTR flag

25 }

26

27 frame->reserved = 0;

10
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memcpy (frame ->data, msg->data, 8);

return ZENOH_CAN_MSG_SIZE;

int zenoh_deserialize_can_msg(
const uint8_t x*buf,
size_t buf_len,
can_message_t *msg)

{
if ('buf || !'msg || buf_len < ZENOH_CAN_MSG_SIZE) A{
return -1;
}
const zenoh_can_frame_t *xframe =
(const zenoh_can_frame_t *)buf;
msg->identifier = frame->id;
msg->data_length_code = frame->dlc;
msg->extd = (frame->flags & 0x01) !'= 0;
msg->rtr = (frame->flags & 0x02) !'= 0;
memcpy (msg->data, frame->data, 8);
return 0;
}

Listing 6: zenoh serialize.c - Serialization implementation

5.4 Zenoh Node Core Implementation

#include "zenoh_node.h"
#include "zenoh_serialize.h"
#include <zenoh-pico.h>

static z_owned_session_t session;
static z_owned_publisher_t pub_can_rx;

static z_owned_subscriber_t sub_can_tx;

// Key expressions for CAN bridge

#define KE_CAN_RX "vehicle/can/rx" // CAN -> Zenoh
#define KE_CAN_TX "vehicle/can/tx" // Zenoh -> CAN
VEX]

* Callback for messages received from Zenoh to send on CAN

*/

5| void can_tx_callback(const z_sample_t *sample, void *ctx) {

can_message_t msg;

if (zenoh_deserialize_can_msg(
sample ->payload.start,
sample ->payload.len,
&msg) == 0) {
// Forward to CAN bus
can_transmit (&msg) ;

VEX]
* Initialize the Zenoh node
*/
esp_err_t zenoh_node_init (const zenoh_node_config_t #*config) {
// Configure Zenoh

11




z_owned_config_t z_config = z_config_default ();

3

3 if (config->router_addr != NULL) {

36 zp_config_insert(z_loan(z_config),

37 Z_CONFIG_CONNECT_KEY,

38 config->router_addr) ;

39 }

10

11 // Open session

12 if (z_open(&session, z_move(z_config)) < 0) {
13 return ESP_FAIL;

14 }

15

16 // Start read/lease tasks

A7 zp_start_read_task(z_loan(session), NULL);
18 zp_start_lease_task(z_loan(session), NULL);
19

50 // Declare publisher for CAN RX

51 pub_can_rx = z_declare_publisher(

52 z_loan(session),

53 z_keyexpr (KE_CAN_RX),

54 NULL

55 ) 8

57 // Subscribe to CAN TX messages

58 z_owned_closure_sample_t callback =
59 Z_closure(can_tx_callback, NULL, NULL);
60 sub_can_tx = z_declare_subscriber (
61 z_loan(session) ,
62 z_keyexpr (KE_CAN_TX),
63 z_move (callback),
64 NULL
65 ) 8
66
67 return ESP_O0K;
68 }
69
70| /% *
1| * Publish a CAN message to Zenoh
*/

esp_err_t zenoh_publish_can_msg(const can_message_t #*msg) {
uint8_t buf [ZENOH_CAN_MSG_SIZE];

gt W N

if (zenoh_serialize_can_msg(msg, buf, sizeof (buf)) < 0) {
return ESP_FAIL;

~N O

IS BN SIS BEPN S B SN BN |

8 }

9

80 z_publisher_put_options_t options =
81 z_publisher_put_options_default () ;
83 if (z_publisher_put(

84 z_loan(pub_can_rx),

85 buf ,

86 ZENOH_CAN_MSG_SIZE,

87 Loptiomns) < 0) {

88 return ESP_FAIL;

89 }

90

91 return ESP_O0K;

Listing 7: zenoh node.c - Core node implementation (excerpt)
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5.5 Data Flow Architecture
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Figure 10: Bidirectional data flow through the Zenoh node

6 Configuration

6.1 Kconfig Options

’

menu "Zenoh Node Configuration"

config ZENOH_NODE_ENABLED

bool "Enable Zenoh Node"
default y
help

Enable the Zenoh communication node.

config ZENOH_ROUTER_ADDRESS
string "Zenoh Router Address"
default "tcp/192.168.1.1:7447"
depends on ZENOH_NODE_ENABLED
help
Address of the Zenoh router to connect

config ZENOH_NODE_MODE

int "Zenoh Node Mode"

default O

range 0 2

depends on ZENOH_NODE_ENABLED
help

0 = Client, 1 = Peer, 2 = Router
config ZENOH_PUBLISH_PERIOD_MS

int "Publish period (ms)"

default 100

depends on ZENOH_NODE_ENABLED

help

to.

Period for publishing CAN messages to Zenoh.

endmenu

Listing 8: Kconfig - ESP-IDF menuconfig options
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7 Performance Considerations
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Figure 11: Latency comparison under different message rates (illustrative)

7.1 Optimization Strategies
1. Message Batching: Aggregate multiple CAN messages before Zenoh transmission

2. Priority Filtering: Only bridge high-priority CAN IDs
3. Compression: Enable Zenoh payload compression for high-bandwidth scenarios

4. QoS Configuration: Use best-effort for telemetry, reliable for commands

8 Conclusion

The Zenoh node implementation successfully bridges the gap between modern pub/sub commu-
nication systems and traditional CAN networks. Key achievements include:

e Successful integration of vendored zenoh-pico for ESP32
e Custom serialization protocol for efficient CAN message transport
¢ Bidirectional communication enabling high-level system integration

e Configurable operation via ESP-IDF Kconfig

14



Benefits of the Implementation

Seamless ROS2 integration via Zenoh bridge

Retained CAN real-time characteristics

Extensible serialization framework

[ J
[ )
[ Flexible deployment (client/peer/router modes) }
[ )
[ )

Minimal additional latency overhead

Figure 12: Summary of implementation benefits
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