
Zenoh Node Implementation

Bridging Modern Pub/Sub Communication with Embedded CAN Systems

Autonomous Vehicle Project Documentation

January 2026

Abstract

This document describes the implementation of a Zenoh communication node within
the autonomous vehicle project's CAN subsystem. The vehicle's primary communication
architecture is built upon Zenoh, providing �exible pub/sub messaging between high-level
systems. This document details the extension of this architecture to include CAN bus sup-
port, enabling communication with legacy automotive components and low-level embedded
controllers. We cover the integration challenges, including vendoring the zenoh-pico library
and implementing custom serialization protocols, while providing an overview of both Zenoh
and CAN 2.0 protocols and their fundamental di�erences.

Contents

1 Introduction 3
1.1 Architectural Philosophy . 3
1.2 Why Add CAN Support? . 4

2 Understanding CAN 2.0 4
2.1 Overview . 4
2.2 CAN Frame Structure . 4
2.3 Key CAN Characteristics . 5
2.4 CAN Bus Topology . 5

3 Understanding Zenoh 5
3.1 Overview . 5
3.2 Zenoh Key Concepts . 6
3.3 Key Expressions . 6

4 CAN vs Zenoh: A Comparison 7
4.1 Why Bridge CAN and Zenoh? . 7

5 Implementation Details 7
5.1 Project Structure . 7
5.2 Vendoring zenoh-pico . 8

5.2.1 Why Vendor? . 8
5.2.2 Vendoring Process . 8
5.2.3 CMake Integration . 8

5.3 Custom Zenoh Serialization . 9
5.3.1 The Need for Custom Serialization . 9
5.3.2 Serialization Implementation . 9

5.4 Zenoh Node Core Implementation . 11
5.5 Data Flow Architecture . 13

1

6 Con�guration 13
6.1 Kcon�g Options . 13

7 Performance Considerations 14
7.1 Optimization Strategies . 14

8 Conclusion 14

A References 15

2

1 Introduction

The autonomous vehicle project is built on a Zenoh-based communication architecture, which
serves as the backbone for all inter-component messaging. Zenoh was chosen as the primary
protocol due to its �exibility, support for various transport mechanisms, and seamless integration
with ROS2 ecosystems.

However, many automotive-grade sensors, actuators, and embedded controllers communicate
exclusively via CAN bus�the de facto standard in vehicle electronics. To leverage these com-
ponents without abandoning our Zenoh-centric architecture, we implemented a bridge node that
extends Zenoh's reach into the CAN domain.

This document describes the Zenoh node implementation located in src/CAN/components/zenoh-node,
which serves as a bidirectional bridge between our existing Zenoh network and newly integrated
CAN bus peripherals.

Planning
System

Perception
System

Control
System

Zenoh Network (Primary Architecture)

Zenoh-CAN
Bridge Node

CAN 2.0 Bus (Extended Support)

Motor
ECU

Sonar
ECU

Brake
ECU

Existing

New Addition

Figure 1: System architecture: Zenoh serves as the primary communication layer, with CAN
support added via a bridge node

1.1 Architectural Philosophy

The vehicle's communication architecture follows a Zenoh-�rst approach:

3

Design Principles

1. Zenoh is the primary and preferred communication protocol

2. All high-level systems communicate exclusively via Zenoh

3. CAN is added as a secondary interface for hardware compatibility

4. CAN messages are transparently mapped to Zenoh key expressions

5. Applications remain unaware of underlying transport (CAN vs native Zenoh)

Figure 2: Zenoh-�rst architectural principles

1.2 Why Add CAN Support?

While Zenoh provides excellent capabilities for modern distributed systems, CAN bus support
was added for the following reasons:

� Hardware Compatibility: Many automotive-grade sensors and actuators only support
CAN

� Industry Standards: CAN is mandated for certain automotive safety systems

� Cost E�ectiveness: CAN-based components are often more a�ordable and readily avail-
able

� Real-time Guarantees: CAN provides deterministic timing for safety-critical operations

� Existing Ecosystem: Leverage existing CAN-based ECUs without �rmware modi�ca-
tions

2 Understanding CAN 2.0

2.1 Overview

Controller Area Network (CAN) is a robust serial communication protocol originally developed
by Bosch in the 1980s for automotive applications. CAN 2.0 de�nes two frame formats:

� CAN 2.0A: Standard frame with 11-bit identi�er

� CAN 2.0B: Extended frame with 29-bit identi�er

2.2 CAN Frame Structure

CAN 2.0A Standard Frame:

SOF
1 bit

Identi�er
11 bits

RTR
IDE
r0

DLC
4 bits

Data Field
0-8 bytes

CRC
15 bits

ACK
EOF

Figure 3: CAN 2.0A standard frame format

4

2.3 Key CAN Characteristics

Characteristic Value/Description

Maximum Data Size 8 bytes per frame
Bus Speed Up to 1 Mbit/s
Arbitration Priority-based (lower ID = higher priority)
Error Detection CRC, bit stu�ng, frame check
Topology Linear bus with termination resistors
Maximum Nodes Typically 32-127 nodes
Maximum Length ∼40m at 1 Mbit/s, ∼1km at 50 kbit/s

Table 1: CAN 2.0 key characteristics

2.4 CAN Bus Topology

120Ω 120Ω

ECU 1 ECU 2 ECU 3 ECU 4

CAN_H / CAN_L (Di�erential Pair)

Figure 4: CAN bus topology with termination resistors

3 Understanding Zenoh

3.1 Overview

Zenoh (pronounced �zee-noh�) is a modern pub/sub/query protocol designed for edge computing,
IoT, and robotics applications. Developed by ZettaScale Technology, Zenoh provides:

� Uni�ed communication: Pub/Sub, Query/Reply, and distributed storage

� Location transparency: Data can be accessed regardless of where it resides

� Protocol �exibility: Works over TCP, UDP, WebSocket, serial, and more

� Minimal overhead: Designed for constrained devices (zenoh-pico)

5

3.2 Zenoh Key Concepts

Publisher

key: "vehicle/speed"

Zenoh
Router/Peer Subscriber

key: "vehicle/**"

Queryable
(Storage)

put() callback()

get()/reply()

Key Expression Matching

Figure 5: Zenoh communication paradigm

3.3 Key Expressions

Zenoh uses hierarchical key expressions similar to MQTT topics but with more powerful wild-
cards:

1 # Exact match

2 vehicle/speed

3

4 # Single -level wildcard (*)

5 vehicle /*/ temperature

6

7 # Multi -level wildcard (**)

8 vehicle /** # Matches all under vehicle/

9

10 # Complex expressions

11 vehicle/sensor /[0 -9]+ # Regex support

Listing 1: Zenoh key expression examples

6

4 CAN vs Zenoh: A Comparison

Aspect CAN 2.0 Zenoh

Data Model Message-based (ID + Data) Key-Value (Pub/Sub)

Max Payload 8 bytes Unlimited (chunked)

Addressing 11/29-bit numeric ID Hierarchical strings

Discovery Implicit (ID �ltering) Automatic peer discovery

Topology Bus (physical) Mesh/P2P (logical)

QoS Priority via ID Con�gurable reliability

Latency Microseconds Milliseconds (typical)

Figure 6: Comparison between CAN 2.0 and Zenoh protocols

4.1 Why Bridge CAN and Zenoh?

CAN Strengths

Real-time guarantees

Deterministic latency

Hardware error handling

Proven automotive standard

Zenoh Strengths

Rich data semantics

Flexible routing

Large payload support

Easy integration with ROS2

Bridge combines
both strengths

Figure 7: Rationale for bridging CAN and Zenoh

5 Implementation Details

5.1 Project Structure

The Zenoh node is implemented as an ESP-IDF component with the following structure:

1 src/CAN/components/zenoh -node/

2 |-- CMakeLists.txt # Build configuration

3 |-- Kconfig # ESP -IDF configuration options

4 |-- include/

5 | |-- zenoh_node.h # Public API

7

6 | +-- zenoh_serialize.h # Serialization interface

7 |-- src/

8 | |-- zenoh_node.c # Main implementation

9 | +-- zenoh_serialize.c # Custom serialization

10 +-- vendor/

11 +-- zenoh -pico/ # Vendored zenoh -pico library

Listing 2: Directory structure of zenoh-node component

5.2 Vendoring zenoh-pico

5.2.1 Why Vendor?

The zenoh-pico library needed to be vendored (included directly in the project) for several
reasons:

Reasons for Vendoring zenoh-pico

1. ESP-IDF component integration requires speci�c build structure

2. Custom platform adaptations for FreeRTOS/ESP32

3. Version pinning for reproducible builds

4. Patches for ESP32-speci�c WiFi/network stack

5. Reduced external dependencies in embedded context

Figure 8: Reasons for vendoring zenoh-pico

5.2.2 Vendoring Process

1 # Clone zenoh -pico at specific version

2 git clone --depth 1 --branch 0.11.0 \

3 https :// github.com/eclipse -zenoh/zenoh -pico.git \

4 vendor/zenoh -pico

5

6 # Remove git history to reduce size

7 rm -rf vendor/zenoh -pico/.git

8

9 # Apply ESP -IDF specific patches

10 patch -p1 < patches/zenoh -pico -esp -idf.patch

Listing 3: Steps to vendor zenoh-pico

5.2.3 CMake Integration

1 idf_component_register(

2 SRCS

3 "src/zenoh_node.c"

4 "src/zenoh_serialize.c"

5 INCLUDE_DIRS

6 "include"

8

7 "vendor/zenoh -pico/include"

8 REQUIRES

9 esp_wifi

10 esp_netif

11 nvs_flash

12 PRIV_REQUIRES

13 can_driver

14)

15

16 # Add zenoh -pico sources

17 file(GLOB_RECURSE ZENOH_PICO_SRCS

18 "vendor/zenoh -pico/src /*.c")

19 target_sources(${COMPONENT_LIB} PRIVATE ${ZENOH_PICO_SRCS })

20

21 # Zenoh -pico configuration

22 target_compile_definitions(${COMPONENT_LIB} PUBLIC

23 ZENOH_ESP32

24 Z_FEATURE_PUBLICATION =1

25 Z_FEATURE_SUBSCRIPTION =1

26 Z_FEATURE_QUERY =1

27)

Listing 4: CMakeLists.txt for zenoh-node component

5.3 Custom Zenoh Serialization

5.3.1 The Need for Custom Serialization

Standard Zenoh payloads are opaque byte arrays. For structured communication with CAN
messages, we implemented a custom serialization layer:

CAN Message

ID (32-bit)

DLC (8-bit)

Data[8]

Flags

Serialization Wire Format

ID (4 bytes, LE)

DLC (1 byte)

Flags (1 byte)

Reserved (2 bytes)

Data (8 bytes)

Total: 16 bytes

Figure 9: CAN message serialization format

5.3.2 Serialization Implementation

1 #ifndef ZENOH_SERIALIZE_H

2 #define ZENOH_SERIALIZE_H

3

4 #include <stdint.h>

5 #include <stddef.h>

6 #include "can_types.h"

7

8 #define ZENOH_CAN_MSG_SIZE 16

9

10 typedef struct __attribute__ ((packed)) {

9

11 uint32_t id; // CAN identifier

12 uint8_t dlc; // Data length code

13 uint8_t flags; // Extended ID, RTR , etc.

14 uint16_t reserved; // Alignment padding

15 uint8_t data [8]; // CAN data payload

16 } zenoh_can_frame_t;

17

18 /**

19 * Serialize a CAN message for Zenoh transmission

20 * @param msg Source CAN message

21 * @param buf Destination buffer (min 16 bytes)

22 * @param buf_len Buffer length

23 * @return Number of bytes written , or -1 on error

24 */

25 int zenoh_serialize_can_msg(

26 const can_message_t *msg ,

27 uint8_t *buf ,

28 size_t buf_len

29);

30

31 /**

32 * Deserialize a Zenoh payload to CAN message

33 * @param buf Source buffer

34 * @param buf_len Buffer length

35 * @param msg Destination CAN message

36 * @return 0 on success , -1 on error

37 */

38 int zenoh_deserialize_can_msg(

39 const uint8_t *buf ,

40 size_t buf_len ,

41 can_message_t *msg

42);

43

44 #endif // ZENOH_SERIALIZE_H

Listing 5: zenoh_serialize.h - Serialization interface

1 #include "zenoh_serialize.h"

2 #include <string.h>

3

4 int zenoh_serialize_can_msg(

5 const can_message_t *msg ,

6 uint8_t *buf ,

7 size_t buf_len)

8 {

9 if (!msg || !buf || buf_len < ZENOH_CAN_MSG_SIZE) {

10 return -1;

11 }

12

13 zenoh_can_frame_t *frame = (zenoh_can_frame_t *)buf;

14

15 // Use little -endian for cross -platform compatibility

16 frame ->id = msg ->identifier;

17 frame ->dlc = msg ->data_length_code;

18 frame ->flags = 0;

19

20 if (msg ->extd) {

21 frame ->flags |= 0x01; // Extended ID flag

22 }

23 if (msg ->rtr) {

24 frame ->flags |= 0x02; // RTR flag

25 }

26

27 frame ->reserved = 0;

10

28 memcpy(frame ->data , msg ->data , 8);

29

30 return ZENOH_CAN_MSG_SIZE;

31 }

32

33 int zenoh_deserialize_can_msg(

34 const uint8_t *buf ,

35 size_t buf_len ,

36 can_message_t *msg)

37 {

38 if (!buf || !msg || buf_len < ZENOH_CAN_MSG_SIZE) {

39 return -1;

40 }

41

42 const zenoh_can_frame_t *frame =

43 (const zenoh_can_frame_t *)buf;

44

45 msg ->identifier = frame ->id;

46 msg ->data_length_code = frame ->dlc;

47 msg ->extd = (frame ->flags & 0x01) != 0;

48 msg ->rtr = (frame ->flags & 0x02) != 0;

49 memcpy(msg ->data , frame ->data , 8);

50

51 return 0;

52 }

Listing 6: zenoh_serialize.c - Serialization implementation

5.4 Zenoh Node Core Implementation

1 #include "zenoh_node.h"

2 #include "zenoh_serialize.h"

3 #include <zenoh -pico.h>

4

5 static z_owned_session_t session;

6 static z_owned_publisher_t pub_can_rx;

7 static z_owned_subscriber_t sub_can_tx;

8

9 // Key expressions for CAN bridge

10 #define KE_CAN_RX "vehicle/can/rx" // CAN -> Zenoh

11 #define KE_CAN_TX "vehicle/can/tx" // Zenoh -> CAN

12

13 /**

14 * Callback for messages received from Zenoh to send on CAN

15 */

16 void can_tx_callback(const z_sample_t *sample , void *ctx) {

17 can_message_t msg;

18

19 if (zenoh_deserialize_can_msg(

20 sample ->payload.start ,

21 sample ->payload.len ,

22 &msg) == 0) {

23 // Forward to CAN bus

24 can_transmit (&msg);

25 }

26 }

27

28 /**

29 * Initialize the Zenoh node

30 */

31 esp_err_t zenoh_node_init(const zenoh_node_config_t *config) {

32 // Configure Zenoh

11

33 z_owned_config_t z_config = z_config_default ();

34

35 if (config ->router_addr != NULL) {

36 zp_config_insert(z_loan(z_config),

37 Z_CONFIG_CONNECT_KEY ,

38 config ->router_addr);

39 }

40

41 // Open session

42 if (z_open (&session , z_move(z_config)) < 0) {

43 return ESP_FAIL;

44 }

45

46 // Start read/lease tasks

47 zp_start_read_task(z_loan(session), NULL);

48 zp_start_lease_task(z_loan(session), NULL);

49

50 // Declare publisher for CAN RX

51 pub_can_rx = z_declare_publisher(

52 z_loan(session),

53 z_keyexpr(KE_CAN_RX),

54 NULL

55);

56

57 // Subscribe to CAN TX messages

58 z_owned_closure_sample_t callback =

59 z_closure(can_tx_callback , NULL , NULL);

60 sub_can_tx = z_declare_subscriber(

61 z_loan(session),

62 z_keyexpr(KE_CAN_TX),

63 z_move(callback),

64 NULL

65);

66

67 return ESP_OK;

68 }

69

70 /**

71 * Publish a CAN message to Zenoh

72 */

73 esp_err_t zenoh_publish_can_msg(const can_message_t *msg) {

74 uint8_t buf[ZENOH_CAN_MSG_SIZE];

75

76 if (zenoh_serialize_can_msg(msg , buf , sizeof(buf)) < 0) {

77 return ESP_FAIL;

78 }

79

80 z_publisher_put_options_t options =

81 z_publisher_put_options_default ();

82

83 if (z_publisher_put(

84 z_loan(pub_can_rx),

85 buf ,

86 ZENOH_CAN_MSG_SIZE ,

87 &options) < 0) {

88 return ESP_FAIL;

89 }

90

91 return ESP_OK;

92 }

Listing 7: zenoh_node.c - Core node implementation (excerpt)

12

5.5 Data Flow Architecture

CAN → Zenoh

CAN
Hardware

CAN
Driver

Serialize

Zenoh
Publisher

Zenoh
Network

can_message_t

bytes[16]

Zenoh → CAN

Zenoh
Network

Zenoh
Subscriber

Deserialize

CAN
Driver

CAN
Hardware

bytes[16]

can_message_t

Zenoh Node (Bridge)

Figure 10: Bidirectional data �ow through the Zenoh node

6 Con�guration

6.1 Kcon�g Options

1 menu "Zenoh Node Configuration"

2

3 config ZENOH_NODE_ENABLED

4 bool "Enable Zenoh Node"

5 default y

6 help

7 Enable the Zenoh communication node.

8

9 config ZENOH_ROUTER_ADDRESS

10 string "Zenoh Router Address"

11 default "tcp /192.168.1.1:7447"

12 depends on ZENOH_NODE_ENABLED

13 help

14 Address of the Zenoh router to connect to.

15

16 config ZENOH_NODE_MODE

17 int "Zenoh Node Mode"

18 default 0

19 range 0 2

20 depends on ZENOH_NODE_ENABLED

21 help

22 0 = Client , 1 = Peer , 2 = Router

23

24 config ZENOH_PUBLISH_PERIOD_MS

25 int "Publish period (ms)"

26 default 100

27 depends on ZENOH_NODE_ENABLED

28 help

29 Period for publishing CAN messages to Zenoh.

30

31 endmenu

Listing 8: Kcon�g - ESP-IDF menucon�g options

13

7 Performance Considerations

0 100 200 300 400 500 600 700 800 900 1,000
0

10

20

30

40

50

Message Rate (msg/s)

L
at
en
cy

(m
s)

CAN Direct

Zenoh (WiFi)
CAN+Zenoh Bridge

Figure 11: Latency comparison under di�erent message rates (illustrative)

7.1 Optimization Strategies

1. Message Batching: Aggregate multiple CAN messages before Zenoh transmission

2. Priority Filtering: Only bridge high-priority CAN IDs

3. Compression: Enable Zenoh payload compression for high-bandwidth scenarios

4. QoS Con�guration: Use best-e�ort for telemetry, reliable for commands

8 Conclusion

The Zenoh node implementation successfully bridges the gap between modern pub/sub commu-
nication systems and traditional CAN networks. Key achievements include:

� Successful integration of vendored zenoh-pico for ESP32

� Custom serialization protocol for e�cient CAN message transport

� Bidirectional communication enabling high-level system integration

� Con�gurable operation via ESP-IDF Kcon�g

14

Bene�ts of the Implementation

Seamless ROS2 integration via Zenoh bridge

Retained CAN real-time characteristics

Flexible deployment (client/peer/router modes)

Extensible serialization framework

Minimal additional latency overhead

Figure 12: Summary of implementation bene�ts

A References

� Zenoh Documentation: https://zenoh.io/docs/

� zenoh-pico GitHub: https://github.com/eclipse-zenoh/zenoh-pico

� CAN 2.0 Speci�cation: Bosch CAN Speci�cation Version 2.0

� ESP-IDF Programming Guide: https://docs.espressif.com/projects/esp-idf/

15

https://zenoh.io/docs/
https://github.com/eclipse-zenoh/zenoh-pico
https://docs.espressif.com/projects/esp-idf/

	Introduction
	Architectural Philosophy
	Why Add CAN Support?

	Understanding CAN 2.0
	Overview
	CAN Frame Structure
	Key CAN Characteristics
	CAN Bus Topology

	Understanding Zenoh
	Overview
	Zenoh Key Concepts
	Key Expressions

	CAN vs Zenoh: A Comparison
	Why Bridge CAN and Zenoh?

	Implementation Details
	Project Structure
	Vendoring zenoh-pico
	Why Vendor?
	Vendoring Process
	CMake Integration

	Custom Zenoh Serialization
	The Need for Custom Serialization
	Serialization Implementation

	Zenoh Node Core Implementation
	Data Flow Architecture

	Configuration
	Kconfig Options

	Performance Considerations
	Optimization Strategies

	Conclusion
	References

